AB为圆O的直径,PC为切线,CD=CB,CE平行AB,求角D

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:01:32
AB为圆O的直径,PC为切线,CD=CB,CE平行AB,求角D
如图,AB为圆O的直径,PC切圆o于C交BA延长线于p,BD⊥PC于B,

BD⊥PC于D?PC切圆O于C,连接OC,则OC⊥PC于C,设圆O的半径为r,OC//BD,OB:OP=CD:CP=1:3;CP=3CD;r:OP=1:3OP=3r;OC:BD=OP:BPr:BD=3

已知AB为圆O的直径,PD切圆O于C,BA的延长线交PC于P

连接OC、BC,∠COP=90-26=64°,∠BOC=180-64=116°,△BOC是等腰三角形,∠BCO=32°,∠OCD是直角,所以∠BCD=90-32=58°

初中数学..证明PA为圆O的切线,A为切点,AB为圆O的直径,弦BC‖OP,求证PC为圆O的切线

证明:连结OC∵PA为圆O的切线∴OA⊥PA∵OC=OB∴∠OCB=∠OBC又∵BC‖OP∴∠AOP=∠OBC∠OCB=∠POC∵∠OCB=∠OBC∠AOP=∠OBC∠OCB=∠POC∴∠POC=∠A

如图,已知三角形ABC中,角A=90度,以AB为直径作半圆交BC于点D,过点D作圆O的切线交AC于点P,求证:PA=PC

画图弧AD对应的圆周角ABD=1/2弧AD对应的圆心角AOD=角AOP所以OP是中位线所以PA=PC

已知,如图,ab是○o的直径,点p为ab延长线上一点,pc为○o切线,c为切点,bd⊥pc,

(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接

圆的切线证明题.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M,求证:PC是⊙O的切线.

证:因为:M是AC的中点所以:AM=CM,且OM=OM所以:△OAM≌△OCM(边、边、边)由此得:∠AOP=∠COP(全等三角形对应角相等)连接OC,则OC=OA,且OP=OP所以:△AOP≌△CO

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

点P在圆O外,PC是圆O的切线,C为切点,直线PO与圆O相交于AB

3)∠A不可以等于45°,如图所示,当∠A=45°时,过点C的切线与AB平行4)若∠A>45°,则过点C的切线与直线AB的交点P在AB的反向延长线上.

如图 在三角形ABC中 ∠BAC=90° 以AB为直径的圆O交BC于点D,过D做圆O的切线交于点P.求证 PA=PC

∵2DP=AB,∴DP:AB=1:2 (切线到直角边的距离等于半径等于直径的一半)\x0d在直角△ABC和△DCP中,\x0d∵DP:AB=CP:AC=1:2 (相似三角形比例关系)∴PC=PA

如图,已知过P点的直线与圆O相交于A,B,AB为圆O的直径,PC为圆O的切线,C为切点,BD⊥PC于D,

1、连接CO,直角三角形POC中,PO=2CO=1,直角边为你斜边的一半,所以角P=30度.2、连接AE,直角三角形ABE中角P=30度,BD=0.5PB=1.5,直角三角形PBD中,角EAB=30度

圆o 以ab为直径 弦cd交ab于p op=pc

解题思路:利用圆心角、弧、弦、弦心距的关系定理求解。解题过程:呵呵,题目是这样的吧?如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想弧AD与弧CB之间的关系,并证明你的猜想。过程请见图

如图所示,已知:PA为圆O的切线,A为切点,AB为圆O的直径,弦BC平行OP交圆O于点C,求证,PC为圆O的切线.

证明:连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵是切线切线,AB

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

如图ab为圆o的直径 pa pc是圆o的切线 a c为切点 ab=4 ac=2倍的根号三

1,连接BC,因为AB是圆的直径,所以∠ACB=90°.在Rt△ABC中,sin∠B=2根3/4=根3/2..所以∠B=60°.因为PC,PD是圆的切线,A,C是切点.所以PA=PC,有弦切角定理得,

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

圆的作业题.1.已知:AB是圆O的直径,P是圆O外一点,PA垂直AB,弦BC//OP,判断PC是否为圆O的切线,说明理由

1.PC是圆O的切线因为BC//OP所以角AOP=角OBC,角POC=角OCB因为OB=OC所以角OBC=角OCB因为角AOP=角OBC,角POC=角OCB所以角AOP=角POC因为OA=OC,OP=

在三角形ABC中,∠BAC=90,以AB为直径做圆O交BC于D,过D做圆O的切线交AC于P.求证:PA=PC

连接ADAB是直径∠ADC=90°PD是切线∠PDA=∠B∠C=∠PDCPC=PDPA=PDPA=PC