AB为园O的直径,F是园O上一点,AC平分角BAF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:15:36
证明;连接OD∵OA=OD∴∠OAD=∠ODA∵AD//PO∴∠OAD=∠BOP【同位角】∠ODA=∠DOP【内错角】∴∠BOP=∠DOP又∵OB=OD,OP=Op∴⊿BOP≌⊿DOP(SAS)∴∠P
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
嗯...问题是什么啊...你看看是不是这个... (1)求证:PC是⊙O的切线连接OC,则∠OCA=∠FAH∵PC=PF∴∠PCF=∠PFC=∠AFH∴DE⊥AB于H∴∠OCA+∠PCF=∠
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
证明:1、∵直径CE∴∠CAE=90∴∠ACE+∠AEC=90∵∠AEC、∠ABC所对应圆弧都为劣弧AC∴∠AEC=∠ABC∴∠ACE+∠ABC=90∵CD⊥AB∴∠BCF+∠ABC=90∴∠ACE=
如图,以P点为圆心作2个圆,一个圆以PA为半径,由于其半径PA小于圆O的半径OA且2圆相切于点A,所以圆P内切于圆O,必然与PC相交与N,则PA=PN<PC一个圆以PB为半径,由于其半径PB大于
1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方
(1)连接AE因为AB是直径AD⊥ABBC⊥AB所以AD,BC是圆O的切线因为CE是切线所以CE=ABEF=AF所以DF=4-AFCF=4+AFRT△ADF中CD²=CF²-DF&
过E作AC的平分线是平行线吧
因为AC与BC垂直,由三垂线定理知BC与PC垂直,故BC垂直于面PCA,又因AF在面PCA内,所以AF与BC垂直.又因为AF垂直于PC,所以AF垂直于平面PBC.,因为AF在平面AEF内,故平面AEF
AF=FG,理由是:连接AD,∵AB是直径,DE⊥AB,∴∠ADB=∠DEB=90°,∴∠ADE=∠ABD,∵D为弧AC中点,∴∠DAC=∠ABD,∴∠ADE=∠DAC,∴AF=DF,∠FAE=∠DA
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
看看图就一目了然了,OE垂直CF(半径垂直切线)SOEBC=2SOBC2*1/2OB*BC=BE*OCBE就很简单的求出来了,等面积.答案应该2√5/5
只给提示可以吗?因为有些说明很难打.(1)中位线定理.EF是三角形PBC的中位线.(2)由中位线定理知EF||BC,而在圆o中,BC垂直于AC,即得EF垂直于AC;又因为PA垂直于BC,即PA垂直于E
∵F是弧AC的中点∴AE=EC,而OAC是等腰三角形∴OE⊥AC在RT三角形AEO中,OE=OF-EF=OA-2,AE=8/2=4∴OA*OA=OE*OE+AE*AE,OA*OA=(OA-2)(OA-
已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
方法一: ∠CFD = ∠COA = ∠DOA =固定值=> ∠PFE = ∠DOE&nbs
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=