AB为n阶矩阵,A B的秩等于A的秩 B的秩吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:34:18
依题意r(A)=r
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
设A=(a1,a2,.an)^T,B=(b1,b2,.bn)^T则AB^T=a1b1a1b2a1b3.a1bna2b1a2b2a2b3.a2bn..anb1anb2anb3.anbn注意任何一个2*2
证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=
利用知识点r(AB)
B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
AB=0,则B的列向量都是AX=0的解,而r(B)=n,所以线性方程组AX=0至少有n个线性无关的解;设这个解集为S,则r(S)=n-r(A)>=n,即r(A)=0,所以r(A)=0,即A=0.如果您
因为AB=0所以B的列向量都是Ax=0的解又因为B不为0所以Ax=0有非零解所以|A|=0所以r(A)
是AB=AC吧当A列满秩时齐次线性方程组Ax=0只有零解.由于AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解所以B-C=0,即有B=C.
因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
对B列分块,r(A)=n则A可逆所以Ax=0只有0解,所以B的每一列都是0向量
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
考察I00AB利用初等变换I00ABI-B0ABI-BA0再由秩的定义容易说明它的秩不小于0-BA0的秩即可.
证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(