当椭圆的离心率为二分之根号二,过点F且与x轴垂直的直线被椭圆截的线段长为根号二

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:19:31
当椭圆的离心率为二分之根号二,过点F且与x轴垂直的直线被椭圆截的线段长为根号二
已知椭圆的中心在原点 焦点在x轴上 离心率为二分之根号二,且椭圆经过x平方+y平方-4x-2∨2y=0的圆心c.,求椭圆

圆C:x²+y²-4x-2√2y=0(x-2)²+(y-√2)²=6圆心(2,√2)半径=√6对于椭圆c/a=√2/2a²=2c²因为a&#

已知椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的离心率为二分之根号3,过右焦点F且斜率为k(k>0

做椭圆右准线,从A、B分别做准线的垂线AM、BN,垂足M、N,做BD⊥AM,垂足D,根据椭圆第二定义,e=|AF|/|AM|,e=|BF|/BN|,|AF|/|BF|=|AM|/BN|=3,|AM|=

谁有巧方法?已知椭圆C,其焦点和长轴都在x轴上,且离心率为二分之根号下3,过右焦点且斜率为k(k>0)的直线与C相交于A

可利用解析几何极坐标方程的办法求解.圆锥曲线的极坐标方程为ρ=ep/(1-ecosθ)(p为焦点到相应准线的距离)AF=ep/(1-ecosθ)BF=ep/(1-ecos(∏-θ)且A

第二道综合题已知椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的离心率为二分之一根号二,短轴端

(1)由离心率为二分之一根号二得到;c/a=二分之一根号二(1)由短轴端点到焦点的距离为2得到:c^2+b^2=4(2)由椭圆性质得到:a^2=b^2+c^2(3)解(1)(2)(3)得;a=2b=根

椭圆方程离心率为二分之根号三,过右焦点F的直线和椭圆有两个交点A、B,若向量AF=3向量FB,求斜率k

k=±√2∵向量AF=3向量FB∴│AF│=3│BF│分别过点A,B作AC,BD垂直于准线设│BF│=a,∴│AF│=3a∴│BD│=a/e,│AC│=3a/e过点B作BG垂直于AC∴AG=3a/e-

已知椭圆的中心在原点,焦点为F1(0,负的二倍根号二),且离心率e=三分之二倍根号二,求椭圆的方程

焦点为F1(0,负的二倍根号二),即c=2根号2且离心率e=三分之二倍根号二,即e=c/a=2根号2/3得到:a=3b^2=a^2-c^2=9-8=1又焦点在Y轴上,故方程是y^2/9+x^2=1

在平面直角坐标系中,有一个以F1(0,-根号3)和F2(0,根号3)为焦点,离心率为二分之根号3的椭圆

F1(0,-根号3)和F2(0,根号3)为焦点,离心率为二分之根号3的椭圆显然a=2,c=√3,b=1,椭圆方程为x²/4+y²/1=1;椭圆在第一象限的部分设P点为(x0,y0)

与求椭圆方程有关的题已知椭圆D:y↑2/a↑2+x↑2/b↑2=1〔a>b>0〕过点(0,根号3),离心率为二分之根号二

a=√3,c=√6/2,b^2=3/2,椭圆D方程:y^2/3+2x^2/3=1k存在时,L:y=kx+m代入得:(2k2+9)x2+4kmx+2m2-6=0相切:m2=1+k2x1+x2=-4km/

如图,已知椭圆C :x^2/a^2+y^2/b^2=1(a>o,b>o)的长轴AB长为4,离心率e=二分之根号三,O为坐

根据题意2a=4a=2e=c/a=√3/2c=√3b²=a²-c²=4-3=1b=1椭圆方程:x²/4+b²=1(2)设点P(2cosa,sina)则

已知椭圆C:x²/a²+y²/b²=1(a>b>0),的离心率为二分之根号三

(1)因为a>b>0,所以焦点在x轴上e=c/a=√(1-b^2/a^2)=√3/2得出:a=2b所以c=√3/2*a=√3b根据题意,直线L:y=x±c因为椭圆为中心对称图形,所以直线L过左焦点还是

设椭圆的中心在原点O,焦点在X轴上,离心率为二分之根号二,椭圆上的一点P到焦点的距离的和等于根号六

1)设椭圆方程为x^2/a^2+y^2/b^2=1;焦点分别为F1,F2由题意e=c/a=√2/2;PF1+PF2=2a=√6解得a=√6/2,b=√3/2,c=√3/2所以所求的椭圆方程为x^2/(

设中心在原点,焦点在x轴上的椭圆的离心率为二分之根号三

1.由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为x²+4y²=a²,因为线段AB的长等于圆的

已知椭圆上有一点P ,P点与椭圆的长轴两顶点连线的斜率之积为负二分之一,求椭圆离心率为多少?

x^2/a^2+y^2/b^2=1P(x,y),A(-a,0),B(a,0)kPA=y/(x+a),kPB=y/(x-a)kPA*kPB=-1/2y/(x+a)*y/(x-a)=-1/2x^2+2y^

椭圆圆心在原点,焦点在X轴,离心率为二分之根号三,X+Y+1=0与椭圆交于P,Q若OP垂直于OQ,求椭圆方程

椭圆方程x^2+4*y^2=4b*b;与直线联立5y^2+2y+1-4b*b=0维达定理表示y1y2,y1+y2;带入x1x2+y1y2=0要自己计算的x1x2=(y1+1)*(y2+1)=y1y2+

焦点在x轴上的椭圆离心率为二分之根号三,并且椭圆与(x-2)^+(y-1)^=5/2交于A,B两点,线段AB的长等于圆的

1.由题意得e=√3/2,所以c²=0.75a²,所以b²=0.25a²,所以设椭圆为x²+4y²=a²,因为线段AB的长等于圆的

已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为二分之根号三,过右焦点F且斜率为K(k>0)的直线

做椭圆右准线,从A、B分别做准线的垂线AM、BN,垂足M、N,做BD⊥AM,垂足D,根据椭圆第二定义,e=|AF|/|AM|,e=|BF|/BN|,|AF|/|BF|=|AM|/BN|=3,|AM|=

设椭圆的中心是坐标原点,焦点在x轴上,离心率为二分之根号三,已知P(0,3/2)到这个椭圆上的点.,求坐标

设所求椭圆的方程为x²/a²+y²/b²=1(a>b>0)由e²=c²/a²=1-(b/a)²=3/4得b/a=1/2设

已知椭圆C:x的平方/a的平方+y的平方/b的平方=1(a>b>0)的离心率为二分之根号三,过右焦点F且斜率为k

已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点.若向量AF=向量FB的3倍,则k=A.1B.√2C.√3D.2