当入取何值时,非齐次线性方程组,入x1 x2 x3=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:58:43
当入取何值时,非齐次线性方程组,入x1 x2 x3=1
非齐次线性方程组 入取何值 有唯一解 无解 有无穷多解

只要考察增广矩阵A|b和矩阵A的关系就可以了:r(A|b)=r(A)=r,则有唯一解;r(A|b)>r(A),则无解;r(A|b)=r(A)

当 a、b取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.

增广矩阵=12-22101-1-1111-13a1-115br3-r1,r4-r112-22101-1-110-111a-10-333b-1r1-2r2,r3+r2,r4+3r21004-101-1-

入 取何值时,线性方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.

系数行列式不为0有位移解a代替lamuda[a111a111a]≠0行列式=0时若r[a11r[a1111a1=1a1a111]11aa²]有无穷解等式不成立无解

题目要求是:问当λ取何值时,齐次线性方程组有非零解?

这种不必费心去用性质,直接展开行列式即得:D=(1-λ)²(3-λ)-2+8-4(3-λ)+4(1-λ)-(1-λ)=(1-λ)²(3-λ)-(3-λ)=(3-λ)[(1-λ)&#

λ取何值时,齐次线性方程组有非零解

1-λ-2423-λ1111-λ齐次线性方程组有非零解R(A)

解非齐次线性方程组λ取何值时,非齐次线性方程组λx1 + x2 + x3 = 1x1 + λx2 + x3 = λx1

系数矩阵的行列式λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知方程组有唯一解.当λ=1时,增广矩阵为111111111111->111100000000r(

当 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.

解:系数矩阵的行列式a111a111a=(a+2)(a-1)^2.当a≠1且a≠-2时,由Crammer法则知有唯一解.当a=1时,增广矩阵为111-2111-2111-2->111100000000

当λ 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,

解:系数矩阵A=2-133-471-2ar2-r1-r3,r1-2r3033-2a0-14-a1-2ar1+3r2,r2*(-1),r3-2r2,0015-5a01a-4103a-8所以当a≠3时,方

当 a取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,求其解.

经典题,现成的结论:(把λ换成a)先计算系数矩阵的行列式λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知有唯一解.当λ=1时,增广矩阵为11111111111

对于线性方程组入取何值时

对方程组矩阵作初等变换1行加上2行和3行入≠2时,1行除以入+2;再把2、3行分别减去1行┌入11入-3┐┌入+2入+2入+2入-7┐┌111(入-7)/(入+2)┐│1入1-2│→│1入1-2│→│

当 取何值时,下列线性方程组无解、有唯一解、有无穷多解?有解时,

经典题,现成的结论:先计算系数矩阵的行列式λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知有唯一解.当λ=1时,增广矩阵为111111111111->1111

(入U)取何值时,齐次线性方程组入X1+X2+X3=0,X1+UX2+X3=0,X1+2UX2+X3=0有非0解.

三元齐次线性方程组有非零解的充分必要条件是系数行列式等于0.系数行列式=λ111u112u1=r3-r2λ111u10u0=u(λ-1).所以u=0或λ=1时方程组有非零解.再问:我想问下那个:r3-

当k取何值时,齐次线性方程组 X1-X2+kX3=0, X1-Kx2+X3=0, 有非零解 KX1-X2+X3=0

3个方程3个未知量的齐次线性方程组有非零解的充分必要条件是系数行列式等于0系数行列式=1-1k1-k1k-11=(k+2)(k-1)^2所以k=1或k=-2.

当a,b取何值时,齐次线性方程组:{ax+y+z=0;x+by+z=0;x+2by+z=0有非零解

系数行列式为0时,这个方程组有非零解.a(b-2b)-(1-1)+(2b-b)=0,即b(1-a)=0.故a=1,或b=0时此方程组有非零解.再问:为什么当系数行列式为0时,方程组有非零解啊再答:定理

当a取何值时,线性方程组{x1+x2-x3=1 2x1+3x2+ax3=3 x1+ax2+3x3=2无解?

11-1123a31a32r2-2r1,r3-r111-1101a+210a-141r3-(a-1)r211-1101a+2100-(a-2)(a+3)-(a-2)当a=-3时,无解当a=2时,无穷多

当a取何值时,非齐次线性方程组有解,求出它的解

增广矩阵=-211-21-21λ11-2λ^2r3+r1+r2,r1+2r20-33-2+2λ1-21λ000(λ-1)(λ+2)r1r21-21λ0-33-2+2λ000(λ-1)(λ+2)所以λ=

线性方程组,讨论r取何值时,线性方程组有解

第1行+第3行*(-r)第2行+第3行*(-(1+r))第3行不动