当x大于0时,证明e^(1 1 X)小于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:31:25
当x大于0时,证明e^(1 1 X)小于
当x>0证明不等式x/e+x

Lnex=1+lnx先证明lnX0)只要证明F(X)的最小值大于零,就证明了x-1>lnX.F'(x)=1-1/x,F'(x)>0==>x>1,F'(x)0

x大于0,证明ln>[1/(e^x)-2/ex)]

ln[x]>[1/(e^x)-(2/ex)]记f(x)=ln[x]-e^(-x)+(2/ex),等价证明:当x>0时,f(x)>0.由一阶导数f’(x)=1/x+1/e^x-2/ex^2=0得:1/x

用拉格朗日中值定理证明不等式 当x>0时,x*e^x>e^x-1

再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了再问:谢啦再问:再来一题好不好,还是拉格朗日证明不等式的再问:用拉

证明不等式:当X大于0时,sinX小于X

令f(x)=sinx-x;求导得,f'(x)=cosx-1当x>0时;由于cosx

证明:当x大于0时,sinx小于x

设y=sinx-x导数y‘=cosx-1当x>0时y'

高数证明题,当X大于等于0时,e的x平方大于等于1+X.

y=e^x-(1+X)y'=(e^x)'-(1+X)'=e^x-1y''=e^x当x>=0时,y'>=0,y''>=0y是增函数,所以当X大于等于0时,e的x平方大于等于1+X.

证明不等式,当x>e时,e^x>x^e

为了利用函数单调性不仿先用他法证明lnx<x设f(x)=lnx-x,(x>0)令f’(x)=1/x-1=0,x=1当01时,f’(x)

当0小于x小于2分之π时,证明tanx大于x+三分之一X三次

令F(x)=tanx-x-x^3/3则F'(x)=1+tan^2x-1-x^2=tan^2x-x^2明显tanx>x,x∈(0,∏/2)所以F(x)>0,F(x)在(0,∏/2)内单调递增又F(0)=

函数f(x)=1-e^(-x),当大于等于0时,f(x)

这个题想了一段时间,是这样的:首先,令g(x)=x/(ax+1),其图像为双曲线,而f(x)图像为指数图像,通过对他们求导,发现他们都是单调递增的函数.要使f(x)=e^(-x/2),由此可断定a>=

证明:当x大于0时,x大于ln(1+x)这道怎么做

求导设F(X)=X-LN(1+X)F'(X)=1-1/(1+X)当x>0时,F'(X)>0F(X)>F(0)=0

证明不等式当x>0时,e^x>x+1

记f(x)=e^x-x-1则f(0)=0当x>0时,f'(x)=e^x-1>0所以f(x)在x>o为增函数,从而f(x)>f(0)=0,即e^x>x+1

f(x)=xlnx 证明 当b>0,b的b次方大于等于1/e的1/e次方

令g(x)=e^(f(x))=x^xf(x)导数1-lnx=0时候x=e即f(x)>f(e)=ex>0所以x^x>e^(f(x))=e^e(x>0)再问:f(x)导数是1+lnx吧再答:不好意思。。。

证明不等式:当x>0时,e^x >1+x+x^2/2

证明:令f(x)=e^x-(1+x+x^2/2),则有f'(x)=e^x-(x+1)f''(x)=e^x-1易知f''(x)在R上单调递增函数.所以,当x>0时,f''(x)>f''(0)=0,则f'

当x大于0时,e的x次方大于1加x的和,

设f(x)=e^x-(1+x),x>0.首先可知f(0)=0,且当x>0时,f(x)的导函数f'(x)=e^x-1>0,故f(x)在[0,无穷大)上严格单调递增,故当x>0时,f(x)>f(0)=0.

当x不等于0时,证明:e的x次方大于1+x

f(x)=e^x-1-xf'(x)=e^x-1当x1+x

证明不等式:当x大于e时,e的x次方大于x的e次方

证明:设函数f(x)=e^x-x^e则f`(x)=e^x-ex^(e-1)当x=e时f'(e)=e^e-e*e^(e-1)=e^e-e^e=0即f(x)在x=e点有极值又∵f‘’(x)=e^x-e(e

证明不等式:x大于0 时,e^x大于ex

令y=e^x-ex则求导得到y'=e^x-e令y'=0得到x=1所以在(0,1)是减区间在(1,+∞)是增区间y的最小值是x=1时也就是ymin=e^1-e=0所以y始终>0也就是e^x>ex

证明:当x大于等于y时,e的x次方大于等于e的y次方乘(x-y+1)

e^x-(x-y+1)e^y>0e^x-e^y+(y-x)e^y>0(e^x-e^y)/(x-y)e^y>1(e^(x-y)-1)/(x-y)>1以上是不等式等价变形,因为x>y,设x-y=n,则n>

函数f(x)=x-alnx证明当x>0时,e^x≥x^e,当且仅当x=e时取得等号

证明:令a=e,则对f(x)=x-elnx求导得f'(x)=1-e/x,因为x>0,故在(0,e)上f'(x)