当n趋于无穷时,lim (根号下n四次方除以n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:30:56
当n趋于无穷时,lim (根号下n四次方除以n
夹逼定理求,当n趋于无穷时,n次根号下(1+a^n)的极限

|a|1时,极限为a,此时可以把1忽略不计,科学点说可以把根号下提个a出来a=

求极限lim(根号下(x^+x)-x) x趋于负无穷

lim[√(x^+x)-x]=lim[√(x^2+x)-x][√(x^2+x)+x]/[√(x^2+x)+x]=lim(x^2+x-x^2)/[√(x^2+x)+x]=limx/[√(x^2+x)+x

求极限 当n趋近于无穷时 lim根号n(根号下(n+1)-根号n)

不是说不能直接等于零,而是因为由于对于∞•0型情况的极限不全为零——要看具体情况.如果你做题做多,或者学习过泰勒公式,你应该发现上面的式子的极限不应该是零先给出你提出的问题证明过程,(见附

根号下(1+1/n)=1 怎么用极限存在法则证明?当n趋于无穷时

因为1<√(1+1/n)<1+1/n,不等式两边的极限均为1,所以由夹挤原理,√(1+1/n)的极限为1.

求lim(根号下n+1)-(根号下n),n趋于无穷大的极限

√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1

当x趋于正无穷时,根号下1+x减去根号下x的极限是?

可以在分子和分母上同时乘以根号(1+x)+根号x.根号(1+x)-根号x=1/(根号(x+1)+根号x)这样很容易看出当x趋于无穷时,原式等于零…

求sin(根号下1+x)-sin(根号下x),当x趋于正无穷时的极限是多少?

∵lim(x->+∞)[√(1+x)-√x]=lim(x->+∞)[(1+x-x)/(√(1+x)+√x)](有理化分子)=lim(x->+∞)[1/(√(1+x)+√x)]=0∴lim(x->+∞)

当n趋于无穷时,lim|Xn|=0,则limXn=0.怎么证明?

|Xn|=+Xn或者-Xnlim|Xn|=0,肯定limXn=0

证明:lim cos x 当x趋于无穷时不存在

取数列xn=2nπ,n=1,2,……当n→∞时,xn→+∞.f(xn)=1→1;再取数列x'n=2nπ+π/2,n=1,2,……当n→∞时,xn→+∞.f(x'n)=0→0由归结原则,limcosx当

大一极限证明题lim(n--->-∞)2^x=0(lim当n趋于负无穷时 2的X次方的极限为0)

要用定义来证明是吗?证明:对于任意给定的ξ>0,要使不等式|2^x-0|=|2^x|=2^x<ξ成立,只需要x<log2(ξ)成立所以取x0=log2(ξ),当x<x0时,必有|2^x-0|<ξ成立同

极限与定积分问题lim当n趋于无穷时,积分从0到1 x^n乘以根号下1加上x^2dx

这个积分应该不好求..所以转头想下别的办法.由积分中值定理得∫(0.1)x^n√(根号)1+x^2dx=ε^n√1+ε^2则极限转变为lim(n→∞)ε^n√1+ε^2=0(ε属于[01]).

求证:lim (a^n/ ) = 0 ,当n 趋于正无穷时.

上面的那位(一布衣半书生)的解法是错误...无穷多个'零'相乘不等于零...我用高等数学的无穷级数来证明...会用到一点点级数收敛的基本知识:记级数{An}(那个n是下标),An=a^n/n!,则{A

设f(x)=lim(n趋于无穷)n次根号下[1+|x|^3n],求f(x)的

lim(n趋于无穷)n次根号下[1+|x|^3n]=lime^[(1/n)·ln(1+|x|^3n)].则|x|1时,极限=lime^[(1/n)·ln(1+|x|^3n)]=lime^[(3ln|x

当n趋于无穷时,n次根号(sin e)^n+1+e^n的极限

上图了,答案是e注意sin(e) < e,所以lim[n→∞] [(sin(e))/e]^n = 0(sin(e))/e是个小于1的分数

设f(x)=lim(n趋于无穷)n次根号下[1+|x|^3n],求f(x)的不可导点

当|x|<0时f(x)=1当|x|=1时f(x)=1当|x|>1时f(x)=|x|^3所以不可导点为x=±1

当x趋于0时,无穷小量√(x+三次根号下√(x))的等价无穷小量

x趋近于0,x+三次根号下√(x)等价于x,所以等价无穷小量是√x

求数列极限的问题n(2^(1/(n+1))-n【(n倍的n+1次根号下2)减n】当n趋于无穷时的极限是多少?

极限为ln2.将其化为(2^(1/n+1)-1)/(1/n),用洛必达法则,可得原极限=((n/n+1)^2)*2^(1/n+1)*ln2,故极限为ln2.