当a为何值时,线性方程组有唯一零解?有无穷多解?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:46:00
写出增广矩阵为11t41-12-4-1t1t²第2行减去第1行,第3行加上第1行~11t40-22-t-80t+1t+1t²+4方程有无穷多解,那么系数行列式一定为0,所以(t+1
a不等于1时,a、b取值可得唯一解x1=-1+b/(a-1),x2=1-2b/(a-1),x3=(1+b)/(a-1).x4=-1/(a-1);a=1,b不等于-1时,无解因2式与3式矛盾;a=1,b
|A|=|11t||1-12||-1t1||A|=|12t-2||100||-1t-13||A|=(-1)*|2t-2||t-13|A|=-[6-(t-1)(t-2)]=0,得t=4,-1.当t=-1
增广矩阵=12-22101-1-1111-13a1-115br3-r1,r4-r112-22101-1-110-111a-10-333b-1r1-2r2,r3+r2,r4+3r21004-101-1-
线性代数,计算呗,最后我的结果a≠0,b≠1,有唯一解a≠1/2,b=1,无解a=1/2,b=1,无穷多解
增广矩阵=11-1123a31a32r2-2r1,r3-r111-1101a+210a-141r3-(a-1)r211-1101a+2100-(a-2)(a+3)-(a-2)当a=-3时,无解当a=2
可以直接画直线图像,重合时有无穷多解,相交时有一个解,平行时无解
楼主什么年级?大学的话,可以用线性代数,把系数行列式求出来,等于零的情况就是解不出来,那个时候,就可以判断是无解还是无线解,其余情况唯一解.如果不是,那我只能把答案告诉你,无法解释……入=-0.8入=
λ=-3,零解λ=2,无穷解λ≠-3、2时,有唯一解
对增广矩阵1a1a11aa^2进行行初等变换,第一行乘以-1加到第二行:1a1a01-aa-1a^2-a则a=1时,第二行全为零,R(A)=R(A,b)=1<3=n,所以方程组有无穷多解,解是x=(1
当λ为何值时,线性方程组有唯一解,无穷解,无解λX1+X2+X3=1X1+λX2+X3=λX1+X2+λX3=λ^2系数行列式|A|=(λ+2)(λ-1)^2.所以当λ≠1且λ≠-2时方程组有唯一解.
增广矩阵=10-1-101111a012235311br2-r1,r4-5r110-1-100122a012230366br3-r2,r4-32r210-1-100122a00003-a0000b-3
设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
经典题,现成的结论:(把λ换成a)先计算系数矩阵的行列式λ111λ111λ=(λ+2)(λ-1)^2.当λ≠1且λ≠-2时,由Crammer法则知有唯一解.当λ=1时,增广矩阵为11111111111
增广矩阵=λ11λ-31λ1-211λ-2r1r311λ-21λ1-2λ11λ-3r2-r1,r3-λr111λ-20λ-11-λ001-λ1-λ^23λ-3r3+r211λ-20λ-11-λ0002
写出方程的增广矩阵为γ11γ+21γ2422γγ^2+4第1行减去第2行*γ,第3行减去第2行*2,交换第1和第2行1γ2401-γ^21-2γ-3γ+202-2γγ-4γ^2-4第2行乘以2,第2行
A=【a11b=【21a1211a】3-a】(1)当A得行列式不为零时,有唯一解,|A|=(a+2)(a-1)(a-1),此时只要a≠-2,1就可以了简单计算后两问:由(1)知道,无解,无穷多解只能在
a=1无穷多解a=0无解a=-1只有零解再问:�ܸ�һ�½���˼·����ϸ�����再答:�������д����������������͡��������=����������=nֻ����⡣С