abc是三角形abc的三条边 且关于x的方程有两个相等的实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:17:11
abc是三角形abc的三条边 且关于x的方程有两个相等的实数根
P是三角形ABC所在平面外一点,且PA垂直平面ABC,若O、Q分别是三角形ABC和三角形PBC的垂心,

延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,

已知角a是三角形ABC的一个内角 且sina+cosa=2/3 则三角形ABC是

(sina+cosa)^2=4/91+2sinacosa=4/9sin2a=-5/9180a>90所以是钝角三角形

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

三角形ABC中,CD垂直AB 且CD的平方等于AD乘以DB 试说明三角形ABC是直角三角形

根据勾股定理:AC^2=AD^2+CD^2BC^2=CD^2+DB^2所以:AC^2+BC^2=2CD^2+AD^2+DB^2=2AD*DB+AD^2+DB^2=(AD+DB)^2=AB^2即是直角三

老师,请问CD是三角形ABC的高,且CD的平方=AD*BD.求证:三角形ABC是直角三角形

CD是三角形ABC的高,ΔBDC,ΔACD都是直角三角形CD^2=AD*BD即CD:AD=BD:CDRtΔBDC∽RtΔACD∠BCD=∠CAD,∠ACD=∠CBD又,∠CBD+∠BCD=90°所以,

三角形ABC中 abc分别是角ABC所对的边 且acosB+bcosA=2 求c边

过顶点C作CD垂直AB于D,acosB=BDbcosA=ACAC+BD=AB=c所以c边的长就是2

设P是三角形ABC所在平面外一点,P到三角形ABC各顶点的距离相等,且p到三角形ABC各边的距离相等.

作两条边的垂直平分线,两线交于一点,过此点作三角型所在的平面的垂线,所得线上平面外的点均是所求点.

设P是三角形ABC所在平面外一点,P到三角形ABC各顶点的距离相等,且p到三角形ABC各边的距离相等

分析:过P作PQ⊥面ABC于Q,则Q为P在面ABC的投影,因为P到A,B,C的距离相等,所以有QA=QB=QC,即Q为三角形ABC的外心,Q到三角形ABC各边的距离相等,即Q为三角形ABC的外心,所以

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知A,B,C是三角形ABC的三条边,且A方+B方+C方等于AB+BC+AC求证三角形ABC是等边三角形

若a方+b方+c方=ab+ac+bc,则利用恒等式(a-b)^2+(b-c)^2+(c-a)^2=2(a^2+b^2+c^2-ab-ac-bc)知道(a-b)^2+(b-c)^2+(c-a)^2=0

三角形ABC中,CD是AB的中线,且DA=DB=DC,试说明三角形ABC是直角三角形

AD=CD=CB,三角形ADC等腰,角DAC=角DCA.同理角DCB=角DBC角DAC+角DCA+角DCB+角DBC=180度角DCA+角DCB=180/2=90度所以三角形ABC是直角三角形

如图圆O是三角形ABC的内切圆,且圆O的半径为5.,三角形ABC的周长为40,求三角形ABC的面积?

连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100

在RT三角形ABC中,斜边AB=2,且三角形ABC的周长是2+根号6,求三角形ABC的面积

由周长公式得:①a+b=√6,由勾股定理得:②a²+b²=4,∴①²-②得:2ab=2,∴½ab=½,∴△ABC面积=½ab=½.

在三角形ABC中abc分别是角ABC的对边长,S为三角形ABC的面积且4sinBsin²(4/π+2/B)+c

1.问一下,是4sinBsin²(π/4+B/2)+cos2B=1+根号3吧?化简得2sinB【1-cos(π/2+B)】+cos2B=1+根号3继续化简得sinB=1/2根号3所以B=π/

已知a是三角形ABC的一个内角,且sina+cosa=2/3,则三角形ABC是( )

B等式两边平方得:1+2sinAcosA=4/9,sinAcosA=-5/18

如图,已知AD是三角形ABC的高,且AB²=BD*CD求证:三角形ABC是直角三角形

证明:∵AB^2=BD*CD∴BD/AB=AB/CD又∵∠B=∠B∴△ABD相似△CBA∴∠BAC=∠ADB=90°∴△ABC为直角三角形

三角形abc和ABC,ab=AB ,ac=AC,ad与AD分别是两个三角形的中线,且AD=ad,求三角形abc与ABC

用向量做:向量AD=(向量AB+向量AC)/2向量BC=向量AC-向量AB于是BC的长度|BC|=|向量AC-向量AB|=|[(向量AC)^2-(向量AB)^2]/(向量AB+向量AC)|=2(|AC

已知AD是三角形ABC的高,且AD的平方=BD×DC.说明三角形ABC是直角三角形

AD/BD=CD/AD∠ADC=∠ADB->三角形CDA与三角形ADB相似->∠CAD=∠B->∠BAC=∠CAD+∠BAD=∠B+∠BAD=90度->三角形ABC是直角三角形