ABCD是正方形,E.F分别是AB.BC中点,阴影面积占正方形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:08:27
ABCD是正方形,E.F分别是AB.BC中点,阴影面积占正方形
如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AD,E.F分别是棱PD.BC中点

四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,∴CD⊥AD,侧面PAD⊥底面ABCD,∴CD⊥平面PAD,∴平面PCD⊥平面PAD,PA=AD,E为PD的中点,∴AE⊥PD,∴AE

如图所示,四边形ABCD是一个正方形.E,F分别为CD和BC边上的中点.已知正方形ABCD的边长是30厘米,那

设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿

如图,正方形ABCD的边长是5厘米,点E,F分别是AB,BC的中点,求BEGF?

因为:点E、F分别是AB和BC的中点,正方形ABCD的边长是5厘米所以:BE=CF=2.5cm又因为:BC=CD=5,角B=角DCF=90°所以三角形EBC全等三角形FCD所以角CEB=角DFC又因为

在正方形ABCD-A1B1C1D1中,E,F分别是棱BC,C1D1的中点,求证E,F//平面BB1D1D

取CD的中点G,连接GE,GF∵E,G分别是CB,CD的中点.∴GE // BD∵F,G分别是CD,C1D1的中点∴GF // DD1∴平面FGE//平面BB1

1、abcd是正方形,边长是8厘米,E、F分别是AB和CD的中点,o是正方形中任意一点,求阴影部分的面积.

设h1为⊿AEO的高设h2为⊿OFC的高因为E、F分别是AB和CD的中点所以AE=BE,DF=FC因为ABCD是正方形边长为8厘米所以AE=FC=8/2=4厘米因为三角形面积=底X高/2所以⊿AEO=

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

如图,在正方形ABCD中,E.F.G.H分别是正方形ABCD的边AB.BC.CD.DA上的点,且

EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9

一个正方形ABCD,已知E,H,F,G分别是ABCD四条线段的中点,连接EFGH,EF=7厘米求大正方形的面积

7x7=4949除以2=24.524.5x4=98正方型面积等于对角线乘积的一半再问:什么意思???????再答:菱形面积等于对角线乘积的一半正方形属于特殊的菱形我想知道你的图形嘿嘿

如右下图所示,已知E,F,G,H分别是正方形ABCD的各边的中点,正方形ABCD的面积是80平方厘米

如图所示设边长为a则bc=a,ch=a/2得bh=√5a/2则ck=√5a/5得jg=√5a/10则bj=√5a/5故阴影部分边长为√5a/5故s阴影部分=a^2/5再问:答案呢。。。。再答:把a=8

如图23所示,已知E,F,G,H分别是正方形ABCD各边的中点,正方形ABCD的面积是80平

你能求出中间正方形IMJK的面积吗?问题补充:要过程,详细一点,谢谢了先求AF再求AI最后求FJ答案略

数学题正方形ABCD E F分别

DE=CF,则AE=DF,直角三角形ABE全等于DAF,角DAF=角ABE角ABE+角BAO=90度,角AOB=90度,即BE垂直AF四边形OGHE是矩形,GO=EGEH:DE=4:5=AG:AD=A

在正方形ABCD中,E,F分别是BC和DC上的点,且

将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得

如图1 在正方形abcd中 e f分别是

看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------

在正方形ABCD中,E,F 分别是AB,AD的中点,求证CF⊥DE

设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE

点E、F、G、H分别是正方形ABCD四条边上的点,并且AE=BF=CG=DH,求证;四边形ABCD是正方形

题写错了吧?应该是证明四边形EFGH是平行四边形吧?提示一下吧,知道思路很容易了由已知证出△AHE≌△BEG≌△CFG≌△DGH即可得到EF=FG=GH=HE由此首先可以知道四边形EFGH是菱形接下来

在四棱锥P-ABCD中,ABCD是正方形,PD垂直平面ABCD,PD=AB ,E、F、G分别是PC、PD、BC的中点 (

(1)证明:作PB中点Q,连结AQ.DQ.EQ因为点Q.E分别是PB.PC的中点所以EQ//BC又AD//BC,则EQ//AD即点A.D.E.Q四点共面因为PD⊥平面ABCD,所以PD⊥AD又在底面正

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

ABCD是正方形,E、F分别是AD、CD的中点,阴影部分面积占正方形的几分之几?

设正方形的边长为2x则正方形的面积为=2x*2x=4x²△AEB的面积=AE*AB/2=x*2x/2=x²△FCB的面积=x²阴影部分面积=4x²-x²