ab=cd,de⊥ac于点f,be⊥于点e,df=be,证ab|dc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:08:08
ab=cd,de⊥ac于点f,be⊥于点e,df=be,证ab|dc
如图①E,F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M

∵AB=CD,AF=CE,∠AFB=∠CED=90°∴△ABF≌△CDE∴BF=DE∵DE⊥AC于E,BF⊥AC于F∴BF∥DE∴∠MBF=∠EDM又∵∠AFB=∠CED,BF=DE∴△BMF≌△DM

如图 E,F分别为线段AC上的两个动点,且DE垂直AC于E,BE垂直AC于F,诺AB=CD,AF=CE,BD交AC于点M

E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF;(2)当E、F两点移动到如图②的位置时,其余条件不变

E、F分别为线段AC上的两个动点,且DE垂直AC于E点,BF垂直AC于F点.已知AB=CD,AF=CE,BD交AC于M点

(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.

如图1,E,F分别为线段AC上的两个动点,且DE垂直于AC于点F,BF垂直于点F,若AB=CD,AF=CE,BD交于AC

答案就是MB=MDMF=ME图2的结果也一样再问:有没有过程?再答:因为BF、DE垂直与AC,AB=CD,AF=CE,所以三角形AFB=三角形CED(直角三角形对等定理),所以BF=DE。因为BF、D

如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD AF=CE&nb

1证明∵DE⊥ACBF⊥AC∴DE∥BF∴∠EDB=∠FBD∠AFD=∠CED=90°又∵AB=CDAF=BD∴△ABF全等于△CDE∴BF=DE又∵∠EDB=∠FBDBF=DE∠AFD=∠CED=9

如图,AC⊥BC于C,DE⊥AC于E,FG⊥AB于G,交BC于点F.若∠1=∠2,试问CD与AB的位置关系如何?并说明理

证明:∵AC⊥BC,DE⊥AC(已知),∴∠AED=∠ACB=90°(垂直定义),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠B

∠C=90°,CD⊥AB,点E是线段BC上一个点,联结DE,作DF⊥DE,交边AC于点F,求证:∠DFE=∠A

解;∵∠EFD=90∠C=90∴∠EFD+∠C=180∴D,E,C,F四点共圆∴∠DFE=∠DCB又∵∠CDB=90∴∠A=∠DCB∴∠DFE=∠A

如图,A,E,F,C四点在同一条直线上,AE=CF,过E,F分别作DE⊥AC于点E,BF⊥AC于点F,AB=CD,BD与

∵AE=CF∴AF=CE又∵AB=CD∠BFA=∠CED=90°∴△ABF全等于△CDE∴DE=BF又∵∠BGF=∠DGE∠BFA=∠CED=90°∴△GBF全等于△GDE∴EG=GF即BD平分EF

如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC,交AC的延长线于点F,且BD=CD.

1、△CDF≌△BDE证明:∵AD平分∠BAC∴∠BAD=∠CAD∵DE⊥AB,DF⊥AC∴∠AED=∠AFD∠BED=90∵AD=AD∴△AED≌△AFD(AAS)∴DE=DF∵BD=CD∴△CDF

如图所示,AB、CD都是圆的弦,且AB//CD,F为圆上一点,延长FD、AB交于点E.求证:AE×AC=AF×DE

证明:连结AD、CF,因为AB//CD所以∠E=∠CDF因为∠CDF和∠CAF为同弧所对的圆周角,所以∠CDF=∠CAF所以∠CAF=∠E又因为AB//CD,所以弧AC=弧BD(平行弦所夹的弧相等)所

如图所示,在△ABC中,点D式BC边上的点,AD=CD,F是AC的中点,DE平分∠ADB交AB于点E,求证DE⊥DF.

AD=DCADC为等腰三角形,F为AC的中点,所以DF是AC的垂直平分线,所以角CDF=角ADFDE为角ADB的角平分线,角ADE=角BDE所以,角ADE+角ADF=角BDE+角CDF=180/2=9

如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,DE⊥AC于点E,DF⊥BC于点F.求证:AC^3/BC^3=

相似三角形△ABC∽△ADE∽△CDE∽△DFB其中△CDE≌△DCFAC/BC=AE/ED=ED/CE=DF/FBCE=DF(AC/BC)^3=AE/ED*ED/CE*DF/FB=AE/BF

如图所示,已知AB=CD,DE⊥AC于E,BF⊥AC于F,BF=DE.求证AB‖CD.

∵DE⊥AC,BF⊥AC∴△ABF和△CDE是直角三角形∵AB=CDBF=DE∴Rt△ABF≌Rt△CDE(HL)∴∠C=∠A∴AB∥CD(内错角相等)

如图,在Rt三角形ABC中,E是斜边AB的中点,CD平行与AB,CD=CE,DE与BC相交于点F,求证:DE⊥与AC

CE=CD=BE=AECD//AB所以BCDE是平行四边形所以角B=角ECB=角DEC所以角DEC+角ACE=角ECB+角ACE=90所以AC垂直DE再问:为什么CD=BE再答:E是直角三角形斜边的中

如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF

1、∵AD=ADAB=ACBD=CD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即∠EAD=∠FAD∵DE⊥AB于点E,DF⊥AC于点F∴∠AED=∠AFD=90°∵AD=AD∴△ADE≌△AD

如图,在三角形ABC中,CD垂直AB于点D,DE垂直AC于点E,DF垂直BC于点F,DE=DF.求证:CD是AB的垂直平

证明:∵DE⊥AC,DF⊥BC∴∠CED=∠CFD=90∵CD=CD,DE=DF∴△CED≌△CFD(HL)∴∠ACD=∠BCD∵CD⊥AB∴∠ADC=∠BDC=90∵CD=CD∴△ACD≌△BCD(

如图,AE=CF,AB‖DC,DE⊥AC于点E,BF⊥AC于点F

AB‖DC,所以角BAF=角ECDAE=CF,所以AF=CEDE⊥AC于点E,BF⊥AC于点F在三角形ABF与三角形ECD中角BAF=角ECDAF=CE角AFB=角CED所以三角形ABF全等于三角形E

如图,ab平行于cd,df交ac于点e,交ab于点f,de=ef.求证:ae=ec.坐等用ASA,

证明:∵AB∥CD.∴∠AFE=∠D;又FE=DE;∠AEF=∠CED.∴⊿AEF≌⊿CED(ASA),AE=EC.

如图,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证DE=DF,

证明:AB=AC,DB=DC,AD=AD,根据SSS判定定理,得△ADB≌△ADC,∴∠DAB=∠DAC,又∵∠AED=∠AFD=90°,∴∠ADE=∠ADF,又∵AD=AD,∠DAE=∠DAF,∴△