AB=0矩阵有解的条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:43:47
据我所知AB=BA并没有什么本质不同的充要条件.当然,有一个必要条件是A和B在(其代数闭包内)可以同时相似上三角化.楼上的讲法显然是错误的,比如取A是单位阵,B是非退化Jordan块.再问:555我刚
矩阵满足AB=BA,就称A,b是可交换的.除了特殊的几个结论外(如,A^2与A可交换),没有什么一般的条件.
AB=E如果A(或B,实际上只要有一个另一个一定是)是方阵的化,那么A,B都可逆互为对方的逆.另外可逆很多充要条件.行列式不等于0AB=BA=E方阵时AB=E满秩方阵可以经过初等变换得到单位矩阵等等.
显然是错的,如果A,B不是方阵,行列式都不存在如果都是方阵的话也只能说明有一个是缺秩的
虽然A和B的特征值相同是A相似于B的必要不充分条件,但是要注意如果A和B都没有重特征值的话这个条件就充分了.你的例子里A没有重特征值,所以一定可以对角化.再给你一个比较实用的充分条件,对于实对称矩阵而
关键就是看A的特征值A的特征值一定满足方程x^3=x+2,容易验证这个方程有且仅有一个实根,并且是正数,记成t那么反过来只要取A=tE_n就行了,一定满足A^3=A+2E至于det(A),由于A的虚特
R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的
矩阵等式(A+B)^3=A^3+3A^2B+3AB^2+B^3成立条件是AB=BA,即A与B可交换.经济数学团队帮你解答,请及时评价.
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m
B似乎是A得一个广义逆这么简单得矩阵,你设B=a,b,c,d带入算就可以了B=abcdAB=a+cb+dcdBA=aa+bcc+dAB=BA可以得到a=a+c==>c=0b=b+d==>d=0d=c+
设矩阵A是n阶方阵,那么如果A的1到n-1阶主子式都非零,那么矩阵A存在LU分解.如果矩阵A存在LU分解且A非奇异,那么LU分解唯一.详见Golub和VanLoan的MatrixComputation
因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.
A为实对称矩阵,且对角线全为0,设A为:A=0aba0cbc0B=000010002I=100010001AB=0a2b002c0c0AB+I=1a2b012c0c1对AB+I进行初等行变换,化成阶梯
系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵.增广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵.其次方程有非零解的条件是系数矩阵的秩小于N,就是说未知数的个数大于方程的个
可以.因为AB=E,所以|A||B|=|AB|=|E|=1.所以A的行列式不等于0,故A可逆.且A^-1=A^-1E=A^-1AB=B.满意请采纳^_^
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B