AB=0则A的秩 B的秩≦n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:05:08
反证法:若A的秩等于n,则A可逆,于是由AB=0左乘A^(--1)得B=0,矛盾.若B的秩等于n,则B可逆,由AB=0右乘B^(--1)得A=0,矛盾.再问:这只能说明A,B的秩不能都为n啊。。。再答
秩为1乘积的秩不超过因子的秩啊
依题意r(A)=r
设B=(b1,b2,…,bn)由AB=0得Abi=0,i=1,2,…,n故方程Ax=0有解b1,b2,…,bn另一方面,Ax=0的线性无关解个数为n-r(A)故r(B)=r(b1,b2,…,bn)≤n
A,B都是n阶非零矩阵,所以r(A)>0,r(B)>0再用不等式r(A)+r(B)-n0,r(B)>0,r(A)+r(B)
若:r(A)=n,则A-1存在,由AB=0,得B=0,矛盾,所以:r(A)<n,同理:r(B)<n,故选择:B.
C都小于n‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘’‘再问:为什么?再问:为什么?再答:这个说起来麻烦了啊简单的说
R(A)+R(B)再问:能具体解释一下吗再答:可用基础解系证明。设R(A)=r,R(B)=s由AB=O知道,B的列向量都是AX=O的解向量,但B的列向量组只是AX=O的所有解向量的一个部分组,所以B的
AB=0,则r(A)+r(B)再问:你好我想知道为什么有“A,B都是非零矩阵,所以r(A),r(B)都小于n"再答:如果r(A),r(B)有一个是N,那么另外一个不就是0了,与A,B都是非零矩阵矛盾嘛
(A)>=1是因为它是非零矩阵,只要是非零矩阵,秩当然至少是1至于r(B)
1.AB=0,则r(A)+r(B)=1,r(B)>=1所以A,B的秩都小于n2.AB=0两边取行列式即得|A||B|=0再问:我想问的是两道题的区别?麻烦老师再解答一下再答:由(1)知必有|A|=0且
也是对的,看一下Sylvester不等式
首先,AB=0根据线性方程组理论,B为A的解向量.如B为A的基础解向量,则r(B)=n-r(A)如果B不是其基础解向量,说明B中的列向量不是线性无关的,则r(B)
AB=0,求证r(A)+r(B)≤n,Sylvester公式r﹙A﹚+r﹙B﹚-n≤r﹙AB﹚右边为零,即得.[Sylvester公式的证明,教材上都有.用分块矩阵的初等变换,打起来麻烦,自己看吧!]
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
∵a>b>0,∴2a>a+b,a+b>2b,ab>b^2,a^2>ab∴a>(a+b)/2>b,a>√ab>b,有a+b/2>√ab则a>(a+b)/2>√ab>b∴M∩N=(√ab,(a+b)/2)
是AB=AC吧当A列满秩时齐次线性方程组Ax=0只有零解.由于AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解所以B-C=0,即有B=C.
因为AB-A+2E=0所以A(B-E)=-2E所以A可逆,且(B-E)A=-2E所以BA-A+2E=0所以AB=BA所以r(AB-BA+2A)=r(2A)=n.
因为AB=0所以B的列向量都是AX=0的解又因为B≠0,所以AX=0有非零解.所以r(A)