ab,cd是圆o的两条直径,弦ce平行于ab,求证ad=de

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:44:25
ab,cd是圆o的两条直径,弦ce平行于ab,求证ad=de
已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

如图AB,CD是○O的两条互相垂直的直径,点O1,O2,O3,O4

选A,理由如下:将AD,DB,BC,CA连起来,得到一个对角线=2的正方形,由割补法:将外面8个弓形图形放进去,阴影面积S=大正方形面积=4²÷2=8.

AB,CD是半径为5的圆O的两条平行弦(AB,CD分别在圆心O的两侧),AB=8,CD=6,MN是直径,AB⊥MN与E,

连接PB,PA=PBPA+PC=PB+BC≥BC(两点之间,线段最短)即P为BC和MN的交点时PA+PC的最小,最小值为BC的长度易求得OE=3,OF=4,EF=7,CF=3,BE=4因为AB平行于C

己知如图AB、CD是⊙O的两条直径,弦CE∥AB,求证:AD=AE.

证明:连接BC,∵AB、CD是⊙O的两条直径,∠AOD=∠BOC,∴弧BC=弧AD.∵CE∥AB,∴弧BC=弧AE.∴弧AD=弧AE.∴AD=AE.

如图,已知AB、CD是O的的两条直径,弦DE//AB.若弧DE的度数为40°,则角BOC=?

AB‖ED弧BD=(180°-40°)/2=70°∠BOC=180°-70=110°

如图,已知AB和CD是⊙O上的两条直径,AE为弦,若AE//CD,求证DE弧=DB弧.

证明:连接OE,则有OE=OC∴∠OAE=∠OEA∵AE//CD∴∠OAE=∠COA,∠OEA=∠DOE∵∠BOD=∠COA∴∠BOD=∠DOE∴DE弧=DB弧

已知AB是圆O的直径,弦CD⊥AB于E,若弦CD把圆O分成2:1的两部分,且CD=4根号3,求圆O的直径及AE的长.

/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2

AB,CD是圆O的两条直径,OC⊥BE于P 求证(1)弧EC=弧AD (2)OP:AE的值是常数

证明:连接OE.(1)由于OP=OP,OB=OE,故RT△OPE≌RT三角形OPB(HL定理).于是

已知AB,CD是圆O的两条直径,弦CE‖AB,弧CE的度数为80°求角AOD的度数

已知:弧CE的度数为80°,即∠COE=80°,∴∠OCE=∠OEC=50°.∠DOB=∠OCE=50°,(两线平行,同位角相等),∴∠AOD=180°-50°=130°.

如图AB,CD是圆O的两条直径,弦CE平行于AB,求证AD=AE

连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E

如图AB,CD是圆O的两条直径,CE平行AB,求证BC弧等于AE弧

连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相

如图,AB,CD是圆O的两条直径,AB⊥CD,弦AF交CO于E,连CF,AF=2根号2CF.

提示,连接AC,过C作CG垂直AF,垂足为G令CF=a,CE=x,A0=rCG=FG=1/2根号2a,AG=3/2根号2aAC=根号5ar=根号5a/2用△AOE,△CGE相似AE/CE=AO/CGA

已知如图,AB、CD是圆心O的两条直径弦AE//CD求证弧BD=弧DE

证明:∵∠AOC=∠BOD【对顶角相等】∴弧AC=弧BD【同圆内,相等圆心角所对的弧相等】∵AE//CD【已知】∴弧AC=弧DE【平行的两弦所夹的弧相等】∴弧BD=弧DE【等量代换】

AB,CD是圆O的两条平行弦,位于圆心同旁,AB=6,CD=8,AB,CD间距离为1,求半径

设半径为r,圆心到弦长为8的距离为x,则r^2-x^2=4^2r^2-(x+1)^2=3^2解得:r=5,x=3答案为5

已知圆O的直径是50cm,圆O的两条平行弦AB=40cm,CD=48cm,求弦AB与弦CD的距离

过O点作AB、CD的垂线,交AB于E、交CD于FEF的长度即弦AB与弦CD的距离由垂径定理的推论可知:AE=BE=1/2AB=20cmCF=DF=1/2CD=24cm则:Rt△OEA中OE=15cmR

MN是圆O的直径,AB,CD是弦,MN垂直AB,CD//AB.求证:MN平分CD

连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.

如图所示,AB,CD是⊙O的两条直径,弦BE=BD,则AC与BE是否相等?为什么?

AC与BE相等,理由为:∵AB,CD为圆的直径,∴∠AOC=∠BOD,∴AC=BD,∵BE=BD,∴BE=BD,则AC=BE.

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ADBC是正方形

图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.

AB,CD是圆O的两条直径,AE是圆O的弦,且AE//CD,试说明弧BD=弧DE

联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分

AB CD是圆O的两条直径,AE是圆O的弦,且AB平行CD,求证弧BD=弧DE

联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分