AB,CD是⊙O的两条互相垂直的直径.四边形ABCD是什么四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:42:34
没有图哦,不知道哪是空白部分和阴影部分呢
AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠
选A,理由如下:将AD,DB,BC,CA连起来,得到一个对角线=2的正方形,由割补法:将外面8个弓形图形放进去,阴影面积S=大正方形面积=4²÷2=8.
证明:设AB、CD交于点P,连接OP.假设AB与CD能互相平分,则CP=DP,AP=BP.∵AB、CD是⊙O内非直径的两弦,∴OP⊥AB,OP⊥CD.这与“过一点有且只有一条直线与已知直线垂直”相矛盾
∠ADC=∠ABC=∠AOC/2=65∠CDP=∠ABP=180-65=115∠P=360-∠CDP-∠ABP-90=360-115*2-90=40
如图?图呢?再问:加Q,969744890,答案:邹昊苏
延长CM交OB于点D,连接OC因为CD∥OA,M为中点,所以D为OB中点,且∠ODC=90°所以OD=OB/2=r/2,因为OC=r所以∠OCD=30°(rt△中,30°角所对的……)因为CD∥OA,
过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2 OB,易证MEFC为矩形∴CF= 1/2 OB= 1/2 OC,∠C
作OF垂直AB于F,作OG垂直CD于G,由已知可得四边形FOGE是矩形,由垂径分弦定理得AB=2AF,CD=2DG,所以AB^2+CD^2=4AF^2+4DG^2=4(OA^2-OF^2)+4(OD^
延长半径bo交圆o于a',延长ao交圆o于b',连续a'b',如下图:因为对称,∠aoc=∠a'od,∠a'od+∠bod=180度,故得证.
过O作OF⊥AB,OG⊥CD,垂足为G,由垂径定理,得AF=BF=AB/2=9所以EF=AF-AE=9-5=4又AB⊥CD,所以四边形EFOG是矩形所以OG=EF=4所以选C
证明:连结OC,延长CM交OB于D,如图,∵点M是弦AB的中点,MC∥OA,∴点D为OB的中点,∴OD=12OB=12OC,在Rt△OCD中,∠DOC=30°,∴∠AOC=30°,∴∠AOC=13∠A
(1)过点O分别作OM⊥AB于点M,ON⊥CD于点N,则∠ONE=∠OME=90°,∵AB⊥CD,∴∠NEM=90°,∴四边形ONEM是矩形,∴ON=EM.∵OM⊥AB,∴AM=12AB=12(4+1
因为四边形的对角线互相平分,所以四边形是平行四边形,因为四边形的对角线互相垂直,所以平行四边形是菱形.故选B.
给你解释一下吧当然选A了棱形包括正方形,正方形是特殊的棱形.选B的只能在四边形有一个内角是90°的时候才是正方形.而题目问的是一般情况,而不是特殊情况,只能选A
第一问显然是正方形啊.因为OC垂直OB,且OC=OB,所以三角形OCB是等腰直角三角形.类似的,OBD,ODA,OAC都是等腰直角三角形.所以四边形ACBD的四个角都是直角,并且每条边一样长.所以是正
过点C作CD⊥OB交OB于点E,交○O于点D,连接AD交OB于点P,交OC于点E.连接PC∵∠COB=30°∴∠C=60°∵∠D=∠AOC/2=60°/2=30°∴∠AEO=90°∴∠A=30°∴OE
过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2OB,易证MEFC为矩形∴CF=1/2OB=1/2OC,∠COF=30°,∴弧AC=1/3弧AB
图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.
再问:应该是同个教材的,可以发12,13,14题的答案来吗?谢谢了再问:求帮忙,速度好吗!再问:喂再答: 再答: 再答: 再问:第十题,再答: 再答