AAT=ATA=∣A∣E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:04:39
如果你知道奇异值分解,那么结论显然.如果不知道就这样做:若r(A)=k,那么可以用Gauss消去法把A消成梯阵,即CA=U,其中C是行初等变换的乘积,U仅有前k行非零且线性无关.于是CAA^TC^T=
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
你那t是转置吧,这里我们换个符号,用a'表示a的转置.(E-aa')=(E'-(aa')')=E-(a')'a'=E-aa'所以E-aa'是对称的而(E-aa')²=E²-2Eaa
求矩阵的特征值是令行列式|A-λE|=0得到了现在|A+E|=0就相当于λ=-1了
1.⑴.A²=AA=AAT=0.AAT的(i,i)元=ai1²+ai2²+……+ain²=0aij是实数.aij²≥0.只可aij=0,A=0⑵,⑴中
AB=(E-aaT)(E+3aaT)=E+3aaT-aaT-aaT3aaT=E+3aaT-aaT-a(3aTa)aT=E+(2+3aTa)aaT.AB=E,则2+3aTa=0,所以k=aTa=-2/3
证明:∵|A+E|=|A+AAT|=|A||E+AT|=-|(E+A)T|=-|E+A|∴2|E+A|=0,即|E+A|=0.
A是什么?原题是什么再问:A是矩阵,书上不是有一条定理是A=0的充要条件是ATA=0的么?(AT表示A的转置)AAT=0能得到A=0么?再答:有这定理?!不过可以由这个推出来:若A是实矩阵,则r(A)
A^2=求和符号(下面i=0,上面i=n)(akiail)AAT=求和符号(下面i=0,上面i=n)(akiali)ATA=求和符号(下面i=0,上面i=n)(aikail)再问:亲有过程么?答案我知
|A+E|=|A+AA'|=|A||E+A'|=|A||(E+A)'|=|A||E+A|,而|A|=-1,所以推出|A+E|=0
AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!
“A×(A)TX=0必有非零解是对么”不对,反例:令A=E,E是n阶单位阵
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
AB(AB)'=ABB'A'=AIA‘=I,(AB)'AB=B'A'AB=B'IB=I,因此原题得证
构造两个齐次线性方程组:(1)Ax=0,(2)(ATA)x=0如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(ATA)=n-基础解系中向量个数.这个很好理解对吧,《线性代数》的基
记住:当a=(a1,a2,.an)T列向量那么aTa是一个常数(常数当然可以随便改变位置),而aaT是一个n阶方阵.
若AT=A,则称A为对称矩阵根据矩阵转置的运算规律:(AT)T=A,(AB)T=BT*AT,(A+B)T=AT+BT(1).(A+AT)T=AT+(AT)T=AT+A=A+AT,所以A+AT为对称矩阵
很简单,我们先来研究(实际上我们也只需要研究b就可以了)设b=a*a',设特征向量和特征值,分别为xi,ri得到b*xi=ri*xi根据矩阵的性质:sum(ri)=a*a'=2;(i=1,n)rank
很显然,题目本身是错的,你的“证明”也是错的给你一个反例0-110