a=(4cosx,1 2)b=(sin(x-pai 6),1)fx=ab
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:03:24
f(x)=a*b=2sinxcosx+(sinx+cosx)(cosx-sinx)=sin2x+cos2x=√2sin(2x+π/4)1)当x∈[0,π/2]时2x+π/4∈[π/4,π/4+π]当2
首先求出f(x)的表达式.f(x)=|a|^2+a·b=1+sinx·cosx+cosx·cosx=1+1/2*sin2x+1/2*(1+cos2x)=3/2+√2/2*sin(2x+π/4)所以,最
f(x)=2(cosx)^2+2根号3sinxcosx=cos2x+1+根号3sin2x=2sin(2x+Pai/6)+1单调增区间是:-Pai/2+2kPai
1a·b=√3sinxcosx+cosx^2=√3sin(2x)/2+(1+cos(2x))/2=sin(2x+π/6)+1/2故:f(x)=a·b-1/2=sin(2x+π/6)最小正周期:T=2π
1)a-b=(-2cosx,2sinx/2-2cosx/2)f(x)=2+sinx-(1/4)[4cos²x+4(sin²x/2+cos²x/2-2sinx/2cosx/
(1)、|a|=√[(sinx)^2+(cosx)^2]=1,|c|=1,a•c=-cosx,设向量a、c的夹角为α,cosα=a•c/(|a|*|c|)=-cosx/1,x=
f(x)=向量a×向量b=(sinx,√3cosx)*(cosx,cosx)=sinxcosx+√3cosxcosx=1/2(2sinxcosx+2√3cosxcosx)=1/2(sin2x+√3co
已知向量A=(cosx,sinx)B=(2cosx,2cosx)函数f(x)=A•B;(1)求|A|及f(π/24)的值(2)在锐角△ABC中a,b,c分别是A,B,C的对边,且f(C+π
已知向量a=(2cosx,cosx)b=(cosx,2sinx)记f(x)=ab,求函数f(x)和单调区间f(x)=(2cosx,cosx)·(cosx,2sinx)=2cos²x+2sin
(1)a*b=0sin2x-cos2x=0sqr(2)sin(2x-π/4)=0x=π/8+kπ/2,k∈Z(2)f(x)=sqr(2)sin(2x-π/4)x∈(3π/8+kπ,7π/8+kπ),k
1,f(x)=a·b=4sinx*2cosx-4√6(cosx+sinx)*cos(x+π/4)=4sin(2x)-4√6(cosx+sinx)*(√2/2cosx-√2/2sinx)=4sin(2x
解析:∵a*b=(cosx+sinx,sinx)*(cosx-sinx,2cosx)=(cosx+sinx)(cosx-sinx)+2sinxcosx=[(cosx)^2-(sinx)^2]+2sin
⑴a=(√3/2,1/2).c=(-1,0).cos<a,c>=a·c/(|a||c|)=-√3/2向量a,c的夹角=5π/6.⑵f(x)=sin2x-cos2x=√2sin(2x-π/4).注意3π
f(x)=2√3cosx^2+2sinxcosx=sin2x+√3(cos2x+1)=sin2x+√3cos2x+√3=2sin(2x+π/3)+√3后面应该会解吧?
(1)a⊥b则:f(x)=sinxcosx+√3cosxcosx=sin2x/2+√3(1+cos2x)/2=sin(2x+π/3)+√3/2=0∴2x+π/3=2kπ+3π/2±π/6∴x=kπ+7
(I)f(x)=a•b=2cos2x+23sinxcosx=2sin(2x+π6)+1,故函数的周期为π.令 2kπ-π2≤2x+π6≤2kπ+π2,k∈z,可得 kπ-π3≤x≤
f(x)=a(a-b)=(sinx,cosx)*(sinx-cosx,0)=sin²x-sinxcosx=1/2*(1-cos2x)-1/2*sin2x.正弦余弦二倍角公式=-1/2*(si
(1)f(x)=sinxcosx+cos^2x=1/2sin2x+1/2(2cos^2x-1)+1/2=1/2(sin2x+cos2x)+1/2=(根号2)/2sin(2x+π/4)+1/2T=2π/