广义积分0 无穷大 1 1 x^2 dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:58:38
广义积分0 无穷大 1 1 x^2 dx
广义积分∫(2,无穷大)1/x(lnx)^k dx收敛,则k的值必满足____?

求出原函数:原函数是(lnx)^(1-k)/(1-k).当k不等于1时.k=1时原函数是lnlnx.很显然k=1时积分不收敛.当k>1时,(lnx)^(1-k)当x趋于正无穷时趋于0,因此积分收敛.当

请问1.计算广义积分∫[0,+∞] dx/(100+x^2).

就是令x=10tana那么1/(x2+100)=100(seca)方dx=10(seca)方da那么不是越掉了吗?等于1/10另外a的范围就是0到π/2(tanπ/2)等于正无穷所以最后答案就是1/1

请计算广义积分:∫a^x x^2 dx

先分部积分∫a^xx^2dx=(1/lna)∫x^2da^x=a^xx^2/lna-(1/lna)∫a^x2xdx=a^xx^2/lna-(1/lna)^2∫2xda^x=a^xx^2/lna-(1/

广义积分∫[0,+∞]e^(-2x)dx解题过程

F(x)=Se^(-2x)dx=-1/2*Se^(-2x)d(-2x)=-1/2*e^(-2x)原积分=lim(x--->+∞)F(x)-F(0)=lim(x--->+∞)(-1/2*e^(-2x)+

求广义积分∫1/(x+1)^2*dx,(+∞,0)

(+∞,0)?假设是(0,+∞)∫1/(x+1)^2*dx=∫1/(x+1)^2*d(x+1)=-1/(x+1)因为lim(x→+∞)[-(1/x+1)]=0所以原式=0-[-1/(0+1)]=1

广义积分∫ln(1-x^2)dx(0到1)

∫ln(1-x^2)dx=xln(1-x^2)-∫xdln(1-x^2)=xln(1-x^2)-∫x/(1-x^2)*(-2x)dx=xln(1-x^2)-2∫(-x^2)/(1-x^2)dx=xln

求广义积分 ∫(-∞—0) 2x/(x^2+1)dx,

∫(-∞—0)2x/(x^2+1)dx=∫(-∞—0)1/(x^2+1)dx^2==∫(-∞—0)1/(x^2+1)d(x^2+1)=ln(x^2+1)|(-∞—0)=-∞求高手指点对否

广义积分∫(0,+∞) 1/(x^2+2X+3)dx为

∫(0-->+∞)1/(x²+2x+3)dx=∫(0-->+∞)1/(x²+2x+1+2)dx=∫(0-->+∞)1/((x+1)²+2)dx=(1/√2)*arctan

广义积分∫[0,1]x/根号(1-x^2)dx

∫[0,1]x/根号(1-x^2)dx=∫[0,1]1/(2根号(1-x^2))dx²=∫[0,1]-d(根号(1-x^2))=-根号(1-x^2))[0,1]=0-(-1)=1

广义积分0到+∞X/(1+X^2)dX

再问:X/(1十X^2)再答:哦再答:稍等再答:再问:再问:第6和第5再问:拜托,过程再问:在吗再问:你做错了再答:额再答:不可能再问:看我的截屏再问:那5和6呢?再问:怎么做??再问:求帮助再答:好

求广义积分xe^(-2x)dx,上限是正无穷大,下限是0,

如图再问:好,谢谢再答:不客气!请采纳!

判断下列广义积分的敛散性∫x^3e^(-x^2)dx,[0,∞]

直接算.=1/2∫(0,+∞)x^2e^(-x^2)dx^2=1/2∫(0,+∞)te^(-t)dt=1/2∫(0,+∞)e^(-t)dt=1/2

已知广义积分∫e^(k|x|)dx=1,广义积分上限是正无穷大,下限是负无穷大,则k=___?

∫e^(k|x|)dx(x从负无穷大到正无穷大)=∫e^kxdx(x从0到正无穷大)+∫e^(-kx)dx(x从负无穷大到0)=[1/ke^kx](x从0到正无穷大)-[1/ke(-kx)](x从负无

判断广义积分的敛散性,:∫(0,负无穷)e^(2x)dx

∫(-∞,0]e^(2x)dx=1/2e^(2x)(-∞,0]=1/2

广义积分∫(0~+∞)dx/1+x^2 dx 怎么求?

∫(0~+∞)1/(1+x^2)dx=arctanx[0-->+∞]=π/2

计算1/(x^2+4)dx区间(0,正无穷)的广义积分

点击放大,如果不清楚,可以放大荧屏:

广义积分题已知广义积分∫e^(k|x|)dx=1,广义积分上限是正无穷大,下限是负无穷大,则k=___?

分成两部分,在负无穷到0上是∫e^(-kx)dx,0到正无穷上是∫e^(kx)dx两个式子一加就出来了

广义积分 ∫ln(1-x^2)dx收敛于________(积分区域为0-1)

这个题我以前做过,请参见ln(1-x²)=-ln(1/(1-x²)),与你的题只差一个负号,所以你这题结果是:2ln2-2