a1=1,n≥2,an=sn的平方除以sn-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:29:25
(1)证明:数列{根号下Sn}是一个等差数列:(2)求{an}通项公式证明:(1)当n=1时,S1=a1=1,√S1=1当n≥2时,an=(√Sn+√Sn-1)/2=Sn-Sn-1(√Sn+√Sn-1
(1)∵Sn=3Sn-1+2∴Sn+1=3Sn-1+2+1∴Sn+1Sn−1+1=3…(4分)又∵S1+1=a1+1=3∴数列{Sn+1}是以3为首项,3为公比的等比数列.…(6分)(2)由(1)得∴
an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n
其实很简单还是用公式an=Sn-S(n-1)2Sn²/(2Sn-1)=an=Sn-Sn-1→S(n-1)=Sn-2Sn²/(2Sn-1)=-Sn/(2Sn-1)分子分母颠倒1/S(
(1)an+2Sn·S(n-1)=0(n≥2),又an=Sn-S(n-1)所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0
(1)∵Sn-Sn-1=2SnSn-1∴1Sn−1−1Sn=2即1Sn−1Sn−1=−2(常数)∴{1Sn}为等差数列  
为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S
an+1=2Snan-1=2Sn-1an+1-an-1=2anan=(-1)^(n+1)Sn=1/2+1/2*(-1)^(n+1)看懂了给我满意,没有别的要求,
2Sn=an+1那么2Sn-1=an-1+1两是相减2an=an-an-1an=-an-1这个数列相当于是a1,-a1,a1,-a1.nan这个数列就是a1,-2a1,3a1,-4a1,.,(n-1)
若存在某一Sk=0,必有ak=0,从而S(k-1)=Sk-ak=0同理推出a(k-1)=a(k-2)=……=a1=0a1=0与已知a1=1矛盾所以不存在Sk=0,Sn恒不为零由An=2(Sn^2)/(
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/
应该是a1=0.5吧.(1)先把a1转化,Sn-(Sn-1)+2Sn*Sn-1=0,(Sn-1)-Sn=2Sn*Sn-1因为Sn不为0,所以两边同除Sn*Sn-1可得1/Sn-1/(Sn-1)=2很明
An+2Sn*Sn-1=0Sn-Sn-1+2Sn*Sn-1=01/Sn-1-1/Sn+2=01/Sn=2nSn=1/2n(n>=2)An=1/(2n-2n^2)(n>=2)=1/2(n=1)
2Sn=(n+1)an2S(n-1)=na(n-1)两式相减得2an=(n+1)an-na(n-1)移相得(1-n)an=-na(n-1)得an=(n/(n-1))a(n-1)an=(n/(n-1))
(1)由sn=sn-12sn-1+1(n≥2),a1=2,两边取倒数得1Sn=1Sn-1+2,即1Sn-1Sn-1=2.∴{1sn}是首项为1S1=1a1=12,2为公差的等差数列;(2)由(1)可得
(1)S1=a1=-23,∵Sn+1Sn=an-2(n≥2,n∈N),令n=2可得,S2+1S2=a2-2=S2-a1-2,∴1S2=23-2,∴S2=-34.同理可求得S3=-45,S4=-56.(
/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)
an=Sn-S(n-1))n>=2时,Sn^2=(Sn-S(n-1))(Sn-1/2)化简得0=-SnS(n-1)-(1/2)Sn+(1/2)S(n-1).即1/Sn-1/S(n-1)=2所以1/Sn
a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1
等比数列前n项和公式Tn=a1(q^n-1)/(q-1)观察Sn=a1(3^n-2)/2=a1(3^n-1)/(3-1)-0.5即Sn为数列{an}的前n项和-0.5所以Sn为等比数列,公比为3,所以