a1=1,n≥2,an=sn的平方除以sn-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:29:25
a1=1,n≥2,an=sn的平方除以sn-1
已知数列{an}的前n项和为Sn,a1=1,当n≥2时,an=(根号下Sn+根号下Sn-1)/2

(1)证明:数列{根号下Sn}是一个等差数列:(2)求{an}通项公式证明:(1)当n=1时,S1=a1=1,√S1=1当n≥2时,an=(√Sn+√Sn-1)/2=Sn-Sn-1(√Sn+√Sn-1

已知Sn是数列{an}的前n项和,且a1=2,当n≥2时有 Sn=3Sn-1+2.

(1)∵Sn=3Sn-1+2∴Sn+1=3Sn-1+2+1∴Sn+1Sn−1+1=3…(4分)又∵S1+1=a1+1=3∴数列{Sn+1}是以3为首项,3为公比的等比数列.…(6分)(2)由(1)得∴

设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=

an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n

设数列an的前n项和为Sn,a1=1 ,an = 2Sn²/2Sn-1 (n≥2)

其实很简单还是用公式an=Sn-S(n-1)2Sn²/(2Sn-1)=an=Sn-Sn-1→S(n-1)=Sn-2Sn²/(2Sn-1)=-Sn/(2Sn-1)分子分母颠倒1/S(

已知数列an的前n项和为Sn,且满足an+2Sn·S(n-1)=0(n≥2),a1=1.5

(1)an+2Sn·S(n-1)=0(n≥2),又an=Sn-S(n-1)所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0

已知数列{an}的前n项和为Sn,且满足a1=1,Sn-Sn-1=2SnSn-1(n≥2).

(1)∵Sn-Sn-1=2SnSn-1∴1Sn−1−1Sn=2即1Sn−1Sn−1=−2(常数)∴{1Sn}为等差数列       

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列

为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*)

an+1=2Snan-1=2Sn-1an+1-an-1=2anan=(-1)^(n+1)Sn=1/2+1/2*(-1)^(n+1)看懂了给我满意,没有别的要求,

数列{an}的前n项和为Sn,a1=1,an+1=2Sn (n∈正整数)

2Sn=an+1那么2Sn-1=an-1+1两是相减2an=an-an-1an=-an-1这个数列相当于是a1,-a1,a1,-a1.nan这个数列就是a1,-2a1,3a1,-4a1,.,(n-1)

数列{an}的首项a1=1,前n项和Sn与an之间满足an=2Sn^2/2Sn -1 (n>=2)

若存在某一Sk=0,必有ak=0,从而S(k-1)=Sk-ak=0同理推出a(k-1)=a(k-2)=……=a1=0a1=0与已知a1=1矛盾所以不存在Sk=0,Sn恒不为零由An=2(Sn^2)/(

an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/

已知数列{an}的前n项和为Sn,且满足an+2Sn+Sn-1=0(n≥2),a1+1/2

应该是a1=0.5吧.(1)先把a1转化,Sn-(Sn-1)+2Sn*Sn-1=0,(Sn-1)-Sn=2Sn*Sn-1因为Sn不为0,所以两边同除Sn*Sn-1可得1/Sn-1/(Sn-1)=2很明

已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An.

An+2Sn*Sn-1=0Sn-Sn-1+2Sn*Sn-1=01/Sn-1-1/Sn+2=01/Sn=2nSn=1/2n(n>=2)An=1/(2n-2n^2)(n>=2)=1/2(n=1)

数列an的前n项和为Sn,a1=1,2Sn=(n+1)an(n为正自然数) 1.证明an=(n/(n

2Sn=(n+1)an2S(n-1)=na(n-1)两式相减得2an=(n+1)an-na(n-1)移相得(1-n)an=-na(n-1)得an=(n/(n-1))a(n-1)an=(n/(n-1))

已知数列{an}的前项和为sn,且满足sn=sn-12sn-1+1(n≥2),a1=2.

(1)由sn=sn-12sn-1+1(n≥2),a1=2,两边取倒数得1Sn=1Sn-1+2,即1Sn-1Sn-1=2.∴{1sn}是首项为1S1=1a1=12,2为公差的等差数列;(2)由(1)可得

已知数列{an}的前n项和为Sn,a1=-23,Sn+1Sn=an-2(n≥2,n∈N)

(1)S1=a1=-23,∵Sn+1Sn=an-2(n≥2,n∈N),令n=2可得,S2+1S2=a2-2=S2-a1-2,∴1S2=23-2,∴S2=-34.同理可求得S3=-45,S4=-56.(

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

数列(an)中,a1=1,当n≥2时,其前n项的和Sn满足Sn平方=an(Sn-1).

an=Sn-S(n-1))n>=2时,Sn^2=(Sn-S(n-1))(Sn-1/2)化简得0=-SnS(n-1)-(1/2)Sn+(1/2)S(n-1).即1/Sn-1/S(n-1)=2所以1/Sn

a1=1/2,an+1=an/an+2,求n/an的sn

a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1

设数列{an}的前n项和为sn,sn=a1(3^n-2)/2(n≥1),a4=54,则a1=

等比数列前n项和公式Tn=a1(q^n-1)/(q-1)观察Sn=a1(3^n-2)/2=a1(3^n-1)/(3-1)-0.5即Sn为数列{an}的前n项和-0.5所以Sn为等比数列,公比为3,所以