a1=(-4,0,0),a2=(1,1,0)求向量组的秩和一个极大线性无关组
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:52:33
瑙f瀽鎶婂凡鐭ョ瓑寮忕湅鎴愬叧浜巃4鐨勬柟绋?褰a1^2+a2^2=0鏃?鍗砤1=a2=0,缁撴灉鏄剧劧鎴愮珛;褰揳1^2+a2^2宸茬煡绛夊紡鏄?叧浜巃4鐨勪竴鍏冧簩娆℃柟绋?鍥犱负a4鏄?疄鏁?
(a1*a2/a3+a2*a3/a1)/2>=a2(均值)(a2*a3/a1+a3*a1/a2)/2>=a3(a1*a2/a3+a3*a1/a2)/2>=a13式左右相加即可
=if(a1="","",a1)
简单的公式:=IF(OR(A1=1,A1=2,A1=3),A2=9,IF(OR(A1=4,A1=5,A1=6),A2=8,IF(OR(A1=7,A1=8,A1=9),A2=0))
102124157第一行乘-1加到2,3行,得102022055第3行减第2行,得102022000所以a1,a2,a3线性相关,a1,a2线性无关
1,1,10,2,5第1行乘-2加到第3行2,4,71,1,10,2,5第2行乘-1加到第3行0,2,51,1,10,2,50,0,0秩等于非零行数2.向量有3个,所以线性相关
首先,齐次线性方程组的解的线性组合仍是方程组的解所以,b1,b2,b3是Ax=0的解.还需证两点:1.b1,b2,b3线性无关2.任一解可由b1,b2,b3线性表示事实上这两点可用下方法一次证明出来.
告诉你思路,解题过程自己算吧首先:设k1b1+k2b2+k3b3=0把b1,b2,b3代入上式,在利用a1,a2,a3线性无关,可以解出k1=k2=k3=0则b1,b2,b3线性无关再说明a1,a2,
等比性质,a1a5=a2a4=(a3)²=1,a1a3=(a2)²>1,所以T5=(a1-1/a1)+(a2-1/a2)+(a3-1/a3)+(a4-1/a4)+(a5-1/a5)
这是斐波拉契数列,网上搜这个关键字就能找到追问:我问的是pascal编程怎么写、、、回答:pascal没学过补充:直接搜斐波拉契数列pascal写法补充:我搜到一个,不知道是不是“varn:longi
在A2中输入=if(a1>0,a1,0)A1=0你没有说,我假设这时A2也为0好了.A1来源与本公式无关.再问:不需要加引号吗
因为|ai|/ai=1或-1又因为:|a1|/a1+|a2|/a2+|a3|/a3+...+|a2011|/a2011+|a2012|/a2012=1968;所以这2012组中,有22个取到-1;y=
利用反证法1:假定a1,a2,a3线性相关,既存在不全为零的常数m,n,t使得ma1+na2+na3=O.若t!=0,则a3=-(m/t)a1-(n/t)a2,由此a3可由a1,a2线性表示,与已知矛
a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,…,所以,n是奇
可以把2006个数分为502个小组(a1,a2,a3,a4)(a5,a6,a7,a8)…(a2001,a2002,a2003,a2004)(a2005,a2006),第一组,取a1=0,a2=2,a3
∵{an}为等比数列,∴an=a1*q^(n-1)设bn=1/an,则bn=1/a1×q^(1-n)∴b(n+1)/bn=q^[1-(n+1)]/q^(1-n)=q^(-1)∴{bn}为等比数列前8项