a1,a2,a3的度量矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:12:23
Ax=0的基础解系含n-R(A)=4-3=1个向量因为a2=a3+a4,所以(0,1,-1,-1)^T是Ax=0的基础解系.因为b=a1-a2+a3-a4,所以(1,-1,1,-1)^T是Ax=b的解
(a1+a2)/a3+(a2+a3)/a1+(a3+a1)/a2=(a1/a2+a2/a1)+(a2/a3+a3/a2)+(a3/a1+a1/a3)a1,a2,a3同号,则a1/a2,a2/a1,a1
=a1+a2+a3+a4得到特解为(1,1,1,1)0=a1-2a2+a3得到齐次解(1,-2,1,0)(只有这一个,因为A得秩是3,齐次解只能有4-3=1个)所以通解为(1,1,1,1)+α(1,-
a2,a3,a4线性无关,a1可以由a2,a3,a4线性表示,所以向量组a1,a2,a3,a4的秩是3,极大线性无关组是a2,a3,a4,也就是说矩阵A的秩是3.线性方程组Ax=b就是向量方程x1a1
(a1+a3,3a1-a2,-a2+a3)=(a1+0a2+a3,3a1-a2+0a3,0a1-a2+a3)==(a1,a2,a3)·DD=┌130┐│0-1-1│└101┘
(a2,a3,a1)=(a1,a2,a3)PP=001100010
直接这样就行了【前提是行数要相等】A=[A1;A2;A3]
(b1,b2,b3)=(a1,a2,a3)KK=100110101k^-1=100-110-101(b1,b2,b3)K^-1=(a1,a2,a3)K^-1即为所求
选项A.|a1-a2,a2-a3,a3-a1|=|a1-a2,a2-a3,a2-a1|=0B.|a1-a2,a2-a3,a3-a1|=.|a1-a2,a1-a3,a3-a1|=0选项C.|a1+2a2
我就不用你的符号表示了,太难打.向量x=a+b-c.那么x^2=((a+b-c),(a+b-c))=(a,a)+2(a,b)+(b,b)-2(a,c)-2(b,c)+(c,c)=0+2*1+(-1)-
只给了已知条件,求什么呢再问:求A的特征向量特征值。再问:a1a2a3线型无关。可以证明的。再问:谢谢了哈再答:A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(a1,0,a1-a2+a3)=(a
解:(1)因为==+2+=1-2*1+2=1所以γ是一个单位向量.(2)因为β与γ正交,所以=0.而==+=1+k=1+k(+)=1+k(2-1)=1+k所以k=-1.
可按下图方法写出通解.经济数学团队帮你解答,请及时采纳.再问:为什么a2+a3-2a1是一个解。能不能是a1+a2+a3再答:Aai=b,你左乘A化简一下就明白了。
==+2+=2+2*(-1)+2=2所以||t||=√2.
50个A矩阵组合到一个大矩阵中上,每列就是一个A,每次取一列,这不就出来编号了吗?
(a1,a1)(a1,a2)(a1,a3)(a2,a1)(a2,a2)(a2,a3)(a3,a1)(a3,a2)(a3,a3)其中(a,b)是两个向量的内积,是对应分量乘积之和如(a1,a2)=1*1
线性变换记为T由已知,T(a1,a2,a3)=(a1,a2,a3)A(b1,b2,b3)=(a1,a2,a3)B,B=231342112ζ=(a1,a2,a3)(2,1,-1)^T.Tζ=T(a1,a
T(a1,a2,a3)=(a1,a2,a3)A=(a3,a2,a1)PA其中P=001010100在基(a3,a2,a1)下的矩阵是PA(即交换A的第1,3行得到的矩阵)再问:不好意思,我觉得有点问题
通解就是所有的解=齐次通解+非齐次的一个特解由a1+2a2-a3=0,齐次的特解为:(1,2,-1)^T(a1,a2,a3的系数)齐次通解为:c(1,2,-1)^T.由向量β=a1+2a2+3a3,得
先用已知向量的列向量写出矩阵1011100101110101再利用初等行变换第一行乘以-1加到第二行101100-1001110101再利用初等行变换第三行乘以-1加到第四行101100-100111