A.C为圆o的直径,且pa垂直pc,bc是圆o的一条弦,连接pb.po
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:51:00
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC
连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所
证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂
连接CA,∵PA⊥⊙O所在平面∴PA⊥BC∵∠BCA为圆周角∴∠BCA=90°∴BC⊥CA∵PA,CA相交与P∴BC⊥平面PAC∴BC⊥PC
①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥
证明1因为pa垂直平面abc所以pa垂直bc又因为ab为圆的直径c是圆上一点且不与ab重合所以ac垂直bc所以bc垂直平面pac所以bc垂直pc2有已知条件可得到直角三角形abc直角三角形pab直角三
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
直线PC与平面ABC所成角=∠PCAAC=1/2ABPA=AB∠PAC=90所以tan∠PCA=2即直线PC与平面ABC所成角的正切值2希望能帮到你,祝学习进步O(∩_∩)O,也别忘了采纳!
先把三棱锥扩展为正方体,求出对角线的长,即:对角线边长为3,所以球的半径为32,所以球的表面积为4π(32)2=3π
AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC
题目是不是有问题?这跟C点没关系,PB与平面α成45度
根据直径所对的圆周角是直角,得到角ACB=90,又角ABC=30且AB=2,所以AC=1,BC=根号3.再求PC=2,PB=根号7.所以有PC^2+BC^2=PB^2,推出角PCB=90.则角ACB就
PA⊥BC 对BC⊥面PAC 对 AC⊥PB 错PC⊥BC 对 ∵AB为直径∴AC⊥BC∵PA⊥面ABC∴PA⊥BC
(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即 CD⊥