A.B为同阶可逆方阵,则A*B为可逆方阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:02:03
∵A2+AB+B2=0,∴A(A+B)=-B2,而B可逆,故:|-B2|=(-1)n|B|2≠0,∴|A(A+B)|=|-B2|≠0,∴A,A+B都可逆,证毕.
矩阵乘法一般不满足交换律,即AC=CA一般不成立.你把C移到A前面来与C^-1消去,用到了交换,这是不对的.
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I也
因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.
首先A可逆,要不已知条件本身就不成立.把A乘过来.1.2B=AB-4A2.4A=AB-2B3.4A=(A-2E)B4.由于A可逆,故|A|不等于0,故|(A-2E)B|=4|A|不等于零5.那么|A-
(C)E-B[(E+AB)^-1]A(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-B(E+AB)[(E+AB)^-1]A=E+BA-BA=
不一定.反例:A可逆,B=-A可逆,但A+B=0不可逆.
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
BX=C-AB^(-1)BX=B^(-1)*(C-A)X=B^(-1)*(C-A)
详细解答如下,点击放大图片.
AXB=C等式两边左乘A^-1,右乘B^-1得X=A^-1CB^-1(A)正确
由A^2+3A=0得A^2+3A+2I=2I,分解得(A+I)(A+2I)=2I,由|A+I|*|A+2I|=2^n≠0得|A+I|≠0,所以A+I可逆.选A.再问:书上说A若B=I则A与B均可逆但(
B(A+B)逆A(A逆+B逆)=B(A+B)逆(E+AB逆)=B(A+B)逆(BB逆+AB逆)=B(A+B)逆(A+B)B逆=BEB逆=E.A(A+B)逆B(A逆+B逆)=A(A+B)逆(BA逆+E)
A.若A或B可逆,则必有AB可逆这个不对,A,B都可逆时,AB才可逆B.若A或B不可逆,则必有AB可逆不对,原因同上C.若A,B均可逆,则必有A+B可逆不对,E和-E都可逆,和是0矩阵不可逆D.若A.
由(AB)(B^(-1)A^(-1))=A(B·B(-1))A^(-1)=AEA^(-1)=AA^-1=E这说明(AB)^-1=B^(-1)*A^(-1).