平面直角坐标系中,已知椭圆C:x^2 a^2 y^2 b^2=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:56:10
解题思路:本题考查了圆周角与圆心角,圆周角与圆外角,圆内角之间的关系;勾股定理,三角函数值等知识,难度较大,特别是第3小题,要利用圆周角与圆外角及圆内角之间的关系,才能得出结论。解题过程:第(2)题的
椭圆x225+y29=1中.a=5,b=3,c=4,故A(-4,0)和C(4,0)是椭圆的两个焦点,∴AB+BC=2a=10,AC=8,由正弦定理得asinA=bsinB=csinC=2r,∴sinA
k(x根号3+y-3)+(x-y根号3-根号3)=0x根号3+y-3=0,(x-y根号3-根号3)=0解的y=0,x=根号3c=根号3a+c=2+根号3===a=2则b=1x^2/4+y^2=1
x^2/3+y^2=1(2)M(m,n)在椭圆上那么m^2/3+n^2=1直线l:mx+ny=1与圆O:X^2+Y^2=1相交于不同两点A,B,那么O到l的距离d
再问:第二问是不是应该要讨论k是否存在?再答:讨论下会更好,但是比较难以说明。不讨论也无所谓,因为答案就是k不存在的情况。
由F1(-1,0)可知c=1,把点P代入椭圆,解得b=1,因为a²=b²+c2,所以a²=2,把a,b代入椭圆方程,第一问可解.设直线方程y=kx+b,分别与椭圆和抛物线
没时间详细解答,给你个思路:1、除开无用条件,原题即是求一点P,P在Y=1/4*X^2上,且P到M(-3,3)的距离加上P到B(0,1)的距离最小2、假设P(x,y),PM=根号[(y-3)^2+(x
解题思路:已知平面直角坐标系xoy中有一椭圆,它的中心在原点,且该椭圆上一动点到焦点的最长距离是2+根号3,最短距离是2-根号3.若椭圆的焦点在y轴上,直线l:y=2x+m截椭圆所得的弦的中点为M求M
(1)、设L为:y=kx+b(b≠0)则有:x^2+3y^2=3即:x^2+3(kx+b)^2=3所以有:xA+xB=-6kb/(1+3k^2),yA+yB=2b/(1+3k^2)射线OE交椭圆C于点
在平面直角坐标系xOy中,已知椭圆C:x²/a²+y²/b²=1.与直线l:x=m;四个点(3,-1).(-2√2,0),(-√3,-√3),(-3,1)中有三
x=1+sy=1-s两式相加,得:x+y=2所以直线方程为y=2-xx=t+2,y=t²则t=x-2所以曲线C方程为y=(x-2)²两式联立:y=2-xy=(x-2)²解
在平面直角坐标系xoy中,已知三角形ABC的顶点A(-p,0)和C(p,0),顶点B在双曲线x²/m²-y²/n²=1(m,n>0,p=(m²+n
ΔABF2的周长=AF2+BF2+AB其中AB是经过F1的线段,因此AB可以写成AF1+BF1所以周长=AF2+BF2+AF1+BF1=(AF2+AF1)+(BF2+BF1)根据椭圆的定义椭圆上的点到
(1)e=c/a=√2/3,c^2/a^2=2/9,a^2=9c^2/2,b^2=7c^2/2,设椭圆上的点P为(acost,bsint),则PQ^2=(acost)^2+(bsint-2)^2=a^
解题思路:考查椭圆的标准方程以及直线与椭圆的位置关系,考查考生的探究能力解题过程:
把图中的入改成u即可答案如图所示,友情提示:点击图片可查看大图
设直线l的斜率为k由条件可得c/a=√2/2a²=b²+c²a=(√2)b点F到直线MN的距离为h=b|k|/√(k²+1)线段MN的长度为d=2√2b×√[(