平面图形A由y=x²,y=1 4x²,y=4所围成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:04:47
平面图形A由y=x²,y=1 4x²,y=4所围成
设由曲线y=1-x^2,y=ax^2(a>0)所围成的平面图形绕y轴旋转所得旋转体的体积等于由曲线y=1-x^2和x轴所

由已知得:y=1-x^2与y=ax^2的交点d的横坐标为:x1=1/根号(a+1),x2=-1/根号(a+1)由曲线y=1-x^2,y=ax^2(a>0)所围成的平面图形绕y轴旋转所得旋转体的体积为:

高数定积分 求由曲线y=x²,y=x与y=2x所围成的平面图形的面积?

先画出图形再求面积.经济数学团队帮你解答.请及时评价.再问:好吧,原来求的是红色阴影的面积,一直以为是围起来的图形的全部面积-_-||

由曲线y=x的平方与y=1围城平面图形的面积是多少

y1=x^2y2=1围成面积相交于(-1,1)(1,1)面积Intergrate[(y2-y1),{x,-1,1}]=Intergrate[(1-x^2),{x,-1,1}=(x-x^3/3)|_(1

求由平面曲线:Y=X平方,Y=1所围图形的面积.

S=1-1/3=2/3这是一个定积分问题再问:你确定这是对的么再答:不好意思忘了×2了,左右两部分再问:额你在写一次吧再答:我给你说详细点再问:恩呢麻烦你发到QQ1013944362

求由曲线y=x^2,直线y=1及y轴围成的平面图形的面积

再问:X>=0再答:做的是x大于等于0

1.计算由y=x²,y=2x所围成的平面图形的面积

画了个图,比较难画, 比较粗糙啊.有点不清楚,另存到电脑就可以看清楚了

设平面图形由曲线x=4,y=x,y=2/x围成,求平面图形的面积解析

y=x,y=2/x的交点为(√2,√2)与x=4的交点为(4,4)(4,1/2)S=∫[√2,4](x-2/x)dx=(1/2x^2-2lnx)[√2,4]=8-4ln2-1+ln2=7-3ln2

求由抛物线y=x2和直线y=x+2所围城的平面图形的面积

如图所示:所围城的平面图形的面积的近似值=4.47

一平面图形由曲线y^2=x和y=x围成,求此平面图形的面积,以及此平面图形绕x轴旋转而生成的旋转体的体积

答:y^2=xy=x联立解得交点(0,0)和(1,1)所以:积分区间为[0,1]y=f(x)=√x在y=x上方平面图形面积:S=(0→1)∫√x-xdx=(0→1)[(2/3)*x^(3/2)-(1/

由曲线 |x|+|y|=1所围成的平面图形的面积为?

是个正方形,边长是根号2,面积是2这个正方形是由x+y=1,x-y=1,-x+y=1,-x-y=1围城的

设平面图形A由x^2+y^2=x确定,求该平面图形的面积

解法一(以x为积分变量求解):∵(自己作图)x²+y²=2x与y=x的交点是(0,0)与(1,1)∴所求面积=∫[√(2x-x²)-x]dx=∫√(1-(x-1)

求由y=1/x,x=1,x=2及x轴围成平面图形的面积.

定积分就可以了 面积=ln2 过程如下图: 

由抛物线y=x^2、直线x=1和x轴围成的平面图形的面积是

--啊?这是高二的吗?孩子啊~姐姐我高三那.这要用高2所学的“积分”来做的.我先告诉你方法吧.你先把图画出来.是不是看到一个三角的“月牙”而在X上的两个三角点分别为0和1这样就要使用积分求解面积了∫(

由抛物线x=y和x=2-y围成的一平面图形,求该平面图形的面积;求由该平面图形绕y轴旋转所得旋转体的体积

微积分.(符合就省去了,不会打)在0到1上(2-y^2-y^2)dy加上绝对值(2-y^2-y^2)dy(在-1到0上的)它等于2y-2/3y^3(0到1)加上绝对值2y-2/3y^3(-1到0)就等

设平面图形A由x^2+y^2=x确定,求该平面图形的面积?

如图:再问:谢谢你!但这个图我已经画出来了,所求的是上半月牙型部分。y用圆的方程表示我也理解。但是,它围绕x=2旋转后,体积的积分表达式没看懂。它对y积分是得到一个大圆柱减小圆柱,然而x积分的式子似乎

设平面图形由曲线y=x2,x=y2围成,求

(1)由于曲线y=x2,x=y2的交点为(0,0),因此以x为积分变量,得图形的面积为:(S=∫10(x−x2)dx=(23x32−13x3)|10=13(2)旋转体的体积:Vx=π∫10((x)2−

求由曲线y=x的平方,y=x所围平面图形的面积

先求两函数的交点(0,0)(1,1)取上方-下方的函数积分,x=0到1面积=∫(x-x^2)dx【0,1】=x^2/2-x^3/3=(1/2-1/3)-(0-0)=1/6