平面内曲线 绕 轴旋转所形成的旋转曲面方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:53:09
2piV=积分(0到2)pi*y^2*dx=积pi*x*dx=pi/2*x^2=2pi
应是y=x^2、x=3、y=0所围成的平面图形x轴旋转一周形成的旋转体的体积.设该体积为V,则V=∫(0→3)πy^2dx=π∫(0→3)x^4dx=)π/5)x^5|x=0→3=243π/5.
首先,把z-x面上曲线的方程给出来;然后,根据此方程求出绕z轴旋转所得曲面的方程;最后,据曲面方程作图.楼主,给条z-x面上曲线的方程,就可让你看看你所需要的曲面.再问:关键问题是如何将方程做z轴的旋
解:V=∫(0,1)π(y-y^4)dy=π*[0.5y²-0.2y^5](0到1)=0.3π
dV=2πx(e-e^x)dx,x从0到1,计算得V=(e-2)π再问:dV=2πx(e-e^x)dx什么意思怎么来的再答:用元素法推导的,由此得到一个结论(教材上应该是有的):由曲线y=f(x),直
1.S=∫(1,e)lnxdx=[xlnx-x](1到e)=(e*lne-e)-(1*ln1-1)=12.V=∫(1,e)π(lnx)²dx=[x(lnx)^2-2xlnx+2x](1到e)
联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2
所围成平面图形的面积=∫(1-lnx)dx=x(1-lnx)│+∫dx(应用分部积分法)=-1+(e-1)=e-2绕x轴旋转一周所生成的体积=∫π(1-ln²x)dx=π[x(1-ln
设旋转体的体积为V,则v=∫π0πsin2xdx=π∫π01−cos2x2dx=π2[π−∫π0cos2xdx]=π22−π2•2∫π0cosxd(2x)=π22−π•sin2x.π0.故旋转体的体积
先求出两者交点,即(1,-1)(4,2)每个横向切片面积就是pi(y+2)^2-pi(y^2)^2然后在y轴积分就是y从-1到2对于y,pi(y+2)^2-pi(y^2)^2积分答案:72pi/5哦,
整个大的长方行旋转后减去图中两个旋转的体积 总体积为2*4*4*π=32π那个正方形旋转后体积为π在算曲线旋转积分则旋转体体积为32π-π-π*31/5=124π/5再问:谢谢大神指导!!
也是旋转曲面.你并没有完全理解它的定义.旋转一周,已经是空间范围了,属于3维.你的疑问,实际上就是一个3维的概念,当空间曲线开始绕定直线旋转的起点计起,这个时刻他们是处于同一个平面的.所以定义包括了你
把z^2换成z^2十y^2即可
1.z=x^2+y^22.f(x,y)=[(2/x)^2-4(1/y)^2]*xy/83.f'x(x0,y0)=0且f'y(x0,y0)=0一、假设为X+kY+mZ=n,则有-3+2k+7m=n;2+
因为曲线绕z轴旋转,所以把x替换成根号(x平方+y平方)就行了.曲面方程是z=a倍根号(x平方+y平方),是个圆锥面.
要用微积分知识其实a正负不影响结果,为方便起见假设a为正首先对π(a/x)^2在区间a~2a积分,其原函数为-π(a^2/x)即=[-π(a^2/2a)]-[-π(a^2/a)]=aπ/2
联立解y=x^2和y=2x,得交点(0,0),(2,4).则V=∫π[(2x)^2-(x^2)^2]dx=∫π(4x^2-x^4)dx=π[4x^3/3-x^5/5]64π/15.