平面z=0,x=0,y=0,-=1怎么画
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:11:39
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z
仔细想了想,应该很简单,先解析一下解析:分析第三个平面可以发现,它是一个平行于y轴的平面,而且点(0,0,3)和点(3,0,0)都在面zox和面x+z-3=0上,而面zox又与x+z-3=0垂直,那么
设面方程为:(10x+2y-2z-27)+入(x+y-z)=0设切点为X,Y,Z那么在(x,y,z)处,两者偏导数斜率相当6x=10+入2y=2+入-2z=-2-入所以x=1/3y+2/3,z=y代入
两个平面的法向量分别为n1=(1,-1,1),n2=(2,1,1),因此它们的交线的方向向量为n1×n2=(-2,1,3),这也是与两个平面都垂直的平面的法向量,所以所求平面方程为-2(x-1)+(y
在直线上取两点(0,0,-1)和(0,1,0),可得直线的方向向量v1=(0,1,1),而平面x+y+z=0的法向量为n1=(1,1,1),所以,由v1、n1确定的平面的法向量为n2=v1×n1=(0
∵y+z÷x=Z+X÷y=X+Y÷z容易发现x,y,z位置互换也成立∴式子与x,y,z值无关∴x=y=z∴(X+Y-Z)÷(X+Y+z)=x/3x=1/3明教为您解答,请点击[满意答案];如若您有不满
两平面夹角,也就是法向量的夹角(或其补角)a=(1,-1,-2)b=(1,2,1)cos=(a,b)/|a||b|=-3/6=-1/2=120°两平面夹角为60°,或写成π/3
令(y+z)/x=(z+x)/y=(x+y)/z=ky+z=kxx+z=kyx+y=kz2(x+y+z)=k(x+y+z)2(x+y+z)=k(x+y+z)(2-k)(x+y+z)=0(x+y+z≠0
由2x+2y-z=1和3x+8y+z=6联立解得x/2=(y-7/10)/(-1)=(z-9/5)/2,所以直线的方向向量为a=(2,-1,2),而平面的法向量为b=(2,2,-1),它们的夹角的余弦
设切点P0,把曲面方程写成F(x,y,z)=0,则Fx、Fy、Fz在P0的值就是切平面法向量的三个坐标,它们与1、4、6成比例★又切点在曲面上★★据★及★★解出P0.
曲线的法向量为(2x,2y,-1)=a(2,4,-1),得x=1,y=2,则z=5.因此在点(1,2,5)处的切平面为2(x-1)+4(y-2)-(z-5)=0,即曲线z=x^2+y^2与;平面2x+
设x+y-z/z=x-y+z/y=y+z-x/x=k有x+y-z=kzx-y+z=kyy+z-x=kx三式相加得x+y+z=k(x+y+z)k=1得x+y=(k+1)zx+z=(k+1)yy+z=(k
大概让求夹角余弦两平面夹角等于其法向量间的夹角,两平面夹角的余弦等于其法向量的数量除以各自长度的乘积cost=(2-1+2)/[√(4+1+4)√(1+1+1)]=3/(3*√3)=√3/3再问:答案
令F=x^2+2y^2+3z^2-21,求偏导数Fx=2x,Fy=4y,Fz=6z设所求为M(x′,y′,z′)处切平面,法向量为{2x′,4y′,6z′),已知平面法向量为{1,4,6}有2x′=4
x+y-2z+1=0与向量(1,1,-2)垂直2x-y+z=0与(2,-1,1)垂直因此所求平面与(1,1,-2)和(2,-1,1)平行与(1,1,-2)×(2,-1,1)=(-1,-5,-3)垂直所
/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+
平面垂直于平面Z=0,则该平面方程可简化为y=ax+b两平面的交线x-2y+z=22x+y-z=-1,解得:x=z/5y=(-5+3z)/5知(0,-1,0)(1,2,5)在所求平面上,代入,求得平面