幂级数∑(1 2^n 1 3^n)(x-1)^n的收敛区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:36:54
f(x)=∑x^n/[n(n+1)]求导:f'(x)=∑x^(n-1)/(n+1)F=x^2f'(x)=∑x^(n+1)/(n+1)再求导:F'=∑x^n=x/(1-x)=1/(1-x)-1积分:F=
设s(x)=∑x^n/n!(n=0到无穷大)则,a(n+1)/a(n)=n!/(n+1)!=1/(n+1)--->0R=+∞收敛域:(-∞,+∞)s'(x)=∑x^(n-1)/(n-1)!(n=1到无
输入符号需要时间,马上写来,等下.再答:级数∑(0,+∞)[1/n!]x^(2n+1)=x∑(0,+∞)[1/n!]x^(2n)=xe^(x^2)(|x|
本来拍了两张图片的,不过只能上传一张,额,解题方法是相同的,就是将这个级数分成两个,再分别求每个级数的收敛域,再取交集.(1/2,3/2]∩[2/3,3/2)=[2/3,3/2]这个是答案.纯手工打造
先将级数∑(∞n=1)(x^n)/n逐项求导得d(∑(∞n=1)(x^n)/n)dx=∑(∞n=0)x^n,当|x|<1时该级数收敛,其和函数S(x)=1/(1-x),即d(∑(∞n=1)(x^n)/
使用比值比较法易知幂级数的收敛域为(-1再问:怎么从第二步得到最后结果的?再答:ln(1+x)=x-x^2/2+x^3/3-x^4/4+……ln(1+x²)=x²-(x²
∑(n从1到正无穷)n(n+2)x^n=x∑(n从1到正无穷)n(n+2)x^(n-1)=x∑(n从1到正无穷)[(n+2)x^n]′=x[∑(n从1到正无穷)(n+2)x^n]′∑(n从1到正无穷)
e^(-x^2)(负号在x^2外面)你去看看e^x的幂级数展开,然后作变量代换(因为e^x是在整个实轴上展开的,所以不必担心变量代换以后收敛半径的问题)
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
当x=0时,级数化为∑(-1)的n次方/n,为收敛的交错级数.而x=2时,级数化为∑(1/n),为调和级数,发散.可知此幂级数的收敛半径为1,即|x|
已经做过:lim(1/[(n+1)3^(n+1)]/(1/n·3^n)=1/3,故收敛半径为3当x=3时,为调和级数,发散当x=-3时.为收敛的交错级数收敛域为[-3,3)
和为e^3,只需利用e^x的幂级数展开式
利用基本级数展开e^x=∑(∞,n=0)x^n/n!求和
应该是x^n/[n(n-1)]吧先两次求导得f''(x)=1+x+x^2+x^3+……=1/(1-x)(|x|
|a[n+1]/a[n]|=(√(n+2)-√(n+1))/(√(n+1)-√(n))*|(3x-1)|,令n趋于无穷,2|3x-1|
再问:x=0的时候为什么等于二分之一呢?后面的解答太好了!万分感谢!
分子分母同时乘以二化为[∞∑n=1][2^n×x^n]/2(n!),整理[∞∑n=1]﹙2x﹚^n/(n!)×1/2,由公式e^x=[∞∑n=1]x^n/(n!)可得1/2e^2x