幂函数.指数函数.三角函数.反三角函数的运算法则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:50:21
基本初等函数除了你说的还包括常函数、幂函数,一共6种
y=f(x)=c(c为常数),则f'(x)=0f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方)f(x)=sinxf'(x)=cosxf(x)=cosxf'(x)=-s
用分部积分,利用(cosx)"=-sinx(sinx)'=cosx(e^x)'=e^x得特点,使得右边也出现与所求相同的项,然后移项即可求得∫e^(-bx)*cos[w(t-x)dx,=∫cos[w(
lg减法就是除加法就是乘原因是设10^y1=x110^y2=x2y=y1+y2如果x=10^(y)=10^(y1+y2)=(10^y1)*(10^y2)=x1*x2转化为lg:y=lg(x)所以y=y
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识.这里就不说了.对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:如果a为任意实数,则函数的定义域为大
就是积分呗,你给的那个链接里已经给出答案了啊,你还想知道什么再问:不全啊再答:积分没有通式的,就有一大堆公式,不同的情况就不一样。你可以借一本大学高数书看看,那后边有附录,很全的
解题思路:计算解题过程:最终答案:略
例如:∫arcsinxdx令t=arcsinx则x=sint则dx=costdt∫tcostdt=tsint-∫sintdt=tsint+cost=arcsinx*sin(aicsinx)+cos(a
sin'x=cosxcos'x=-sinx(a^x)'=a^xlna(logax)'=1/(xlna)这些就是公式了,推导过程不知道你能不能接受,但是初三的水平,一般情况下是只需要记住这个公式会运用就
这个很简单的,你应该是懂的吧,比如F(x)=4X(sinX+3X)这个随便换的
定义与定义式:自变量x和因变量y有如下关系:y=kx+b(k,b为常数,k≠0)则称y是x的一次函数.特别地,当b=0时,y是x的正比例函数.II、一次函数的性质:y的变化值与对应的x的变化值成正比例
对的初等函数是由幂函数、指数函数、对数函数、初等函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识.这里就不说了.对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:如果a为任意实数,则函数的定义域为大
解题思路:函数解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?
请见下图.
xarctanx-2ln|1+x2|它的导数就是arctanx再问:那arcsinx呢?
①意思是若(x,y)是log2x上的点,那么(x-2,2y)是y=g(x)上的点你可以这么看,(t,k)是y=g(x)上的点,而t=x-2,k=2y,而(x,y)是f(x)上的点,也就是说,k=2lo
这些都是要在高中学习的幂函数Y=X^N底数为自变量指数函数Y=A^X指数为自变量对数函数Y=LOGAX此时X=A^Y幂为自变量三角函数Y=SINX等反三角函数三角函数的反函数就是反三角函数
初等函数是由幂函数、指数函数、对数函数、初等函数、三角函数、反三角函数与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数.它是
给我个电子邮箱,回头发给你