a,b,c属于正实数,2a 3b 4c=22,求2 a 3 b 9 c的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 19:01:59
a,b,c属于正实数,2a 3b 4c=22,求2 a 3 b 9 c的最小值
a^(2a)+b^(2b)+c^(2c)与a^(b+c)b^(a+c)c^(a+b)的大小,其中a,b,c属于正实数且互

证明:a^2a*b^2b*c^2c>a^(b+c)*b^(a+c)*c^(a+b)(1)(a/b)^(a-b)*(b/c)^(b-c)*(a/c)^(a-c)>1(2)因为a>b>c>0,所以a/b>

数学题 a,b.c属于正实数,且a+b+c=1求证1/a+1/b+1/c大于等于9

1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c=1+(b+c)/a+1(a+c)/b+1(a+b)/c=3+b/c+c/b+a/c+c/a+a/b+b/a>=3+2

基本不等式证明已知a,b,c属于R+(正实数),求证1/2(a+b)^2 + 1/4(a+b)大于等于 a根号b+b根号

a√b+b√a=√ab*(√a+√b)由基本不等式得:√ab≤(a+b)/2所以a√b+b√a≤(a+b)*(√a+√b)/2≤[(a+b)^2+(√a+√b)^2]/4=[(a+b)^2+2√ab+

已知a,b属于正实数,且2c>a+b,求证:c-根号下c^2-ab<a<c+根号下c^2-ab

反证法证明假设a>=c+……或者a=……,或者a+c=c^2-ab因为a是正实数所以得a-2c>=-b,即2c

已知:a ,b 属于正实数,2c>a+b.求证:c平方 >ab ,c-根号(c平方 -ab )ab ,c-根号(c平方

2c>a+ba,b都是正数c²>(a²+b²+2ab)/4a²+b²≥2abc²>(2ab+2ab)/4c²>ab2c>a+ba,

已知a,b,c属于正实数,且a+b+c=1.求证:ab+bc+ca

证:由均值不等式得a²+b²≥2ab,b²+c²≥2bc,c²+a²≥2ca(a²+b²)+(b²+c

已知a,b,c属于正实数,且a+b+c=1求证a加a分之一乘以b+b分之一大于等于25/4

此题稍等再问:在线等再问:好了吗再答:马上再答:∵a>0b>0∴(√a-√b)^2=a+b-2√ab>02√a

设a,b,c,属于正实数,求证a/(b+c)+b/(c+a)+c/(a+b)>=2/3

【证法1】左边=c/(a+b)+1+a/(b+c)+1+b/(c+a)+1-3=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3=(a+b+c)[1/(a+b)+

a,b,c属于正实数,已知a/(1+a)+b/(1+b)+c/(1+c)=1,求证:a+b+c大于等于3/2

高中解法:1/(1+a)+1/(1+b)+1/(1+c)=2由柯西不等式:(1+a+1+b+1+c)*[1/(1+a)+1/(1+b)+1/(1+c)]>=(1+1+1)^23+a+b+c>=9/2a

若a,b属于正实数,2a+3b=4.,则ab的最大值

用均值不等式即可求解2a+3b≥2√(2a)·√(3b),而2a+3b=4,所以2√(2a)·√(3b)≤4,整理得√(6ab)≤2,平方,得ab≤2/3,当2a=3b时,等号成立,此时a=1,b=2

已知a,b,c属于正实数.求证 a平方+b平方+c平方大于等于1/3

漏掉了一个条件吧a+b+c=1对吗?早晨没有事,做做3(a平方+b平方+c平方)=a平方+b平方+c平方+2(a平方+b平方+c平方)>=a平方+b平方+c平方+2ab+2bc+2ac=(a+b+c)

(1)已知abc属于正实数,求证(a^2+a+1)(b^2+b+1)(c^2+c+1)>=27abc

(1)证明:(a-1)^2=a^2-2a+1>=0所以a^2+1>=2aa^2+a+1>=3ab^2+b+1>=3bc^2+c+1>=3c三个正的同向不等式相乘就可知(a^2+a+1)(b^2+b+1

a,b,c属于正实数.证明:(a+b+c)/3大于等于根号下三次方abc

证明:对于正数a、b、c,有a³+b³+c³≥3abc成立,等号当且仅当a=b=c时成立;因为:a³+b³+c³-3abc=(a+b+c)(

已知abc属于正实数 且abc=1 求证(a+b)(b+c)(c+a)≥8

﹙a+b)(b+c)(c+a﹚≥﹙2√ab﹚﹙2√bc﹚﹙2√ca﹚=8abc=8

不等式证明习题已知a+b+c=1,a,b,c均属于正实数,求证1/a + 2/b + 4/c>=18.

(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a

已知a,b,c属于正实数,求证(a+b+c)(a2+b2+c2)>=9abc

a+b+c≥3(abc)(1/3)即abc开三次方同理a2+b2+c2≥3(a^2b^2c^2)(1/3)则(a+b+c)(a2+b2+c2)>=3(abc)(1/3)*3(a^2b^2c^2)(1/

a,b,c,属于正实数,且a+b+c=1求证(1+a)(1+b)(1+c)大于等于8(1-a)(1-b)(1-c)

左式=(1+a)(1+b)(1+c)=(a+b+c+a)(a+b+c+b)(a+b+c+c)=[(a+b)+(a+c)][(a+b)+(b+c)][(a+c)+(b+c)]≥2√(a+b)√(a+c)

若a,b,c属于正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(a+c)+1/(a+b)

利用(a+b)/2≥2/(1/a+1/b)可得(1/a+1/b)/2≥2/(a+b),所以有1/2a+1/2b≥4/(2a+2b)1/2a+1/2c≥4/(2a+2c)1/2c+1/2b≥4/(2c+