a(6 0 ) b ( 0 6 )c为椭圆x^2 20 y^2 5=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:08:40
a(6 0 ) b ( 0 6 )c为椭圆x^2 20 y^2 5=1
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>c)的离心率为1/2,F1、F2分别为椭圆C的左右两焦点,若椭圆

因e=c/a=1/2.2c=2所以c=1勾股定理得a^2=4.b^2=3所以x^2/4+y^2/3=1或y^2/4+x^2/3=1

椭圆C的焦点在x轴上,焦距为2,直线n:x-y-1=0与椭圆C交于A、B两点,F1是左焦点,且F1A┴F1B,则椭圆C的

设椭圆方程标准方程为:(x²/a²)+(y²/b²)=1(a>b>0)已知2c=2,所以c=1则,a²=b²+1即,x²/(b&#

椭圆C:x²/a²+y²/b²=1(a>b>0)的两个焦点为F1F2,点P在椭圆

(1) 设P(x,y)∵  PF⊥F1F2 ∴  F1F2=根号(PF2²-PF1²)=2倍根号5∴&n

F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在

由题可得A点在x轴,B点在y轴设B(0,b),C(x1,0)则F(-c,0)圆的离心力为e=1/2则a=2c因为BC⊥BF所以x1=b²/cx1>0所以B,C,F三点确定的圆M的圆心为(-c

已知椭圆C:x.x/a.a+y.y/b.b=1的左焦点F及点A(0,b),原点O到直线FA的距离为√2/2b 求椭圆C的

F(-c,0),A(0,b),所以直线FA的方程为x/(-c)+y/b=1,即bx-cy+bc=0原点O到直线FA的距离为|bc|/√(b²+c²)=(√2/2)b又b²

已知椭圆x2/a2+y2/b2=1(a>b>0),直线l1:x/a-y/b=1被椭圆C截得弦长为2√2,过椭圆C的右交点

已知椭圆x2/a2+y2/b2=1(a>b>0),直线l1:x/a-y/b=1被椭圆C截得弦长为2√2,过椭圆C的右交点且斜率为√3的直线L2椭圆C截得弦长是椭圆长轴2/5,求椭圆C的方程.x&sup

设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的上顶点为A,椭圆C上两点P,Q在在x轴上的射影分别为左焦点F

就是1.5椭圆C上两点P,Q在在x轴上的射影有可能P点在X轴下方Q在X轴上方懂了不?还要这个题的答案不

已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F1,F2分别为椭圆C的左右焦点,若椭圆C

(1)∵2c=2,且c/a=1/2,∴c=1,a=2.∴b²=3.∴x²/4+y²/3=1.(2)设M(x0,y0),x0²/4+y0²/3=1.∵F

F(c,0)为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点,A,B为椭圆的上下顶点,P为直线AF与椭圆的

通过右焦点和上顶点的直线方程:y=-b(x-c)/c;代入椭圆方程x²/a²+(x-c)²/c²=1,解得交点坐标:x=2a²c/(a²+c

设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=根号2/2,点A是椭圆上的一点,且点A到椭圆c的

1.由题知得2a=4,a=2,e=c/a=√2/2,c=√2,b=√(a^2-c^2)=√2椭圆方程是x^2/4+y^2/2=1.2.设动点P坐标为(x,y)则由动点P关于直线y=2x的对称点为P1(

过椭圆C x^2/4+y^2/3=1的左焦点F作倾斜角为60º的直线l与椭圆C交于A,B两点,则1/|AF|+

再答:望采纳啊再答:还有疑惑?再答:可以好评么再问:y=√3(x1)是怎么来的?再答:倾斜角60的正切对应其斜率再答:倾斜角是与X轴正半轴的夹角再答:做高线可发现斜率即正切再问:谢谢啦

已知椭圆C:x^2/a^2+y^2/b^2=1,(a>b>0)的离心率为√6/3,椭圆C上任何一点到椭圆的两个焦点的距离

(1)2a=6,得a=3e=c/a=√6/3=c/3解得c=√6=√(a^2-b^2)=√(9-b^2)b=√3故椭圆方程为:x^2/9+y^2/3=1(2)将y=kx-2代入椭圆方程得x^2+3(k

椭圆x^2/a^2+y^2/b^2=1的长轴为短轴的根号3倍,直线y=x与椭圆交于A,B两点,C为椭圆的右顶点,向量OA

椭圆x^2/a^2+y^2/b^2=1的长轴为短轴的根号3倍,则a=根号3b则椭圆方程变为x^2/3b^2+y^2/b^2=1C(根号3b,0)向量OC=(根号3b,0)联立椭圆方程与直线方程,x^2

已知椭圆c:x平方/a方+y方/b方=1(a>b>0)的一条准线为x=1.求若椭圆离心率为三分之根号三,求椭圆方程

右准线方程:x=a^2/c,a^2/c=1,a^2=c,离心率e=c/a=√3/3,a=√3c,(√3c)^2=c,c=1/3,a=√3/3,b=√2/3,则椭圆方程为:3x^2+9y^2/2=1.

椭圆x^2/a^2+y^2/b^2=1,(a>b>0)的半焦距为c,若点(c,2c)在椭圆上,则椭圆的离心率e

点(c,2c)在椭圆上,则:c²/a²+4c²/b²=1b²c²+4a²c²=a²b²4a²