带电平面圆环,电荷面密度,内径外径R1R2若环以转动求圆心处磁感应强度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:06:36
带电平面圆环,电荷面密度,内径外径R1R2若环以转动求圆心处磁感应强度
一无限大平面,开有一个半径为R的圆孔,设平面均匀带电,电荷面密度为k.求孔的轴线上离孔心为r处的场强.

根据互补原理,模型等效为半径为R,电荷密度为k的圆贴片,因此在轴线上离孔r处的场强,首先积分算出圆贴片所带电荷,然后利用库伦定律计算半径为r的场强.再问:不用分

一道大学物理静电场题一无限大均匀带电平面A,其附近放一与它平行的且有一定厚度的无限大平面导体B.已知A上的电荷面密度为+

无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明

电荷面密度为p的均匀带电无限大平面外一点电场强度大小表达式为什么是p/2ε

取一圆柱形高斯面,其底面与该平面平行大小为S.根据高斯定理(φ=q/ε)和对称性(上下两个底面),2ES=pS/ε,所以E=p/2ε再问:对称性是个什么?还有就是不懂那个2ES再答:根据对称性,平面两

一半径为R的均匀带电圆环,电荷线密度为a,设无穷远处为零点,则圆环中心O点的电势U=?

用电势叠加原理做,即将环看成是由很多个点电荷(取极短的一段)组成,每个点电荷在O点的电势的代数和等于所求结果.将环均匀分成n段(n很大),每段的带电量是q=a*2πR/n每段电荷在O点的电势都是 U=

一无限大的均匀带电平面,开有一个半径为a的圆洞,设电荷面密度为t,求着洞的轴线上离洞心距离为r的电场强

用补偿法,中间打洞相当于完整的平面和洞的位置有一带相反电荷的圆盘的叠加,离无限大平面r处的场强为:t/2e0,均匀带电圆盘轴线r处场强为:t*[1-r/(a^2+r^2)^1/2]/2e0,合场强为两

半径为r的均匀带电半球面,电荷面密度为n,求球心的电场强度

这个没有办法用高斯定理做,假设用高斯,首先要做个闭合的面,这个面只能是个球面(别的面就更复杂了),而这个球面上的场强肯定是大小不均的,你又不能用电量除以面积积分得场强.要求解的话,要积分,把半球面细分

一半径为R的半球面均匀带电,电荷面密度为a,求球心的电场强度?

把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识

三个平行的“无限大”均匀带电平面,电荷面密度都是+σ

每一个“无限大”均匀带电平面,在空间产生的电场强度为σ/(2ε0),三个平面把空间分成四部分,根据场强叠加原理,四部分空间的场强从左到右分别是:3σ/(2ε0),方向向左;σ/(2ε0),方向向左;σ

一个半径为R的均匀带电圆环,电荷线密度为W,求距环心处为r的点的场强

弱弱得问一下、你学过电场的高斯定理吗?学过的话就好办、没学过的话还要解释一下高斯定理的证明再问:高斯定理正在学习中,所以就遇到了这个问题再答:哦哦、、我刚刚仔细想了想、这题还真不好办、是求圆环所在明面

两块无限大均匀带电平面,已知电荷面密度为正负O,计算场强分布,

取高斯面S,ES=4πkOS/ε,E=4πkO/εls的单位ms不对.

一道大学物理题 两个无限大的平行平面都均匀带电,电荷的面密度分别为σ1和σ2,试求空间各处场强.

用高斯定理∮EdS=q/ε,可以设计一个这样的则得2ES=Sσ/εE=σ/2ε,这是平面的场强公式,然后空间的就只需要叠加一下就行了,加加减减什么的再问:能给下具体步骤吗再答:我去这还不具体啊。平行板

如图所示,电荷均匀分布在带电圆环上,总的电荷量为+Q,在圆环...

用微元法电荷均匀分布在带电圆环上,则环上一点带电量为Q/2πR,此点和点电荷的作用力F=kq(Q/2πR)/(R^2+L^2)正交分解,水平方向力Fx=FL/(R^2+L^2)^0.5,竖直方向力Fy

电荷面密度为σ的无限大的均匀带电平面周围空间的电场强度推导

运用高斯定理的话,十分简单..将左式中的dS积分后移到右边,E=σ/2ε0(2ε0就是2).但问题是你懂微积分不?

设有一无限大均匀带电平面 电荷面密度为 σ求据平面一定距离处电场强度

对称性.等距离处上下两个表面对通量有贡献,2ES包含的电荷量σS因此2ES=σS/ε匀强电场,与距离无关.

两个无限大的平行平面均匀带电,电荷面密度分别为+-σ,如果板的面积是S,则两板间作用力F=?

F=Eq=σ/(2*episilon)*σ*S,注意要用单板场强再问:其实我知道答案是这个,就是为什么用单板场强啊?再答:这个太简单了,这块板为什么会受力,是因为它放入了对方的场中,自己的场对自己是没

两个平行的“无限大”均匀带电平面,其电荷面密度分别为+σ和+2σ求各个区域的电场强度.

两板之间用大的减小的,因为两板对这里场强方向相反.两板的左边和右边都是相加两板各自对其场强相加,原因是场强方向相同.无限大带点平板场强与距离无关.各处均为σ除以2e.{我晕,那个k=1/(4π*e.)

一均匀带电的1/4圆环,电荷线密度为A,则该1/4圆环对其圆心的场强是多少?

我这画图不方便,我尽量用文字解释清楚:假设圆环半径为R,那么该带电体的长度是πR/2.电荷的线密度为A,那总电量就是πRA/2了.假设将该圆环置于圆心的正左侧,那么它占据的就是左下45°到左上45°这