已经椭圆C进过点E(根号3,1),离心率为3分之根号6,O位坐标原点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:07:10
将M和N坐标代入方程4/a²+2/b²=1(1)6/a²+1/b²=1(2)(1)-(2)×24/a²-12/a²=-18/a²=
抛物线y^2=4x的焦点F坐标(1,0)右顶点A(a,0)设过A的直线方程y/(x-a)=1/n=kny=x-a代入抛物线方程y^2=4(ny+a)y^2-4ny-4a=0设M(x1,y1),N(x2
楼主你的思路太繁琐了,你没有画图想想它们的关系吗?已知方向向量为v=(1,√3)的直线l过点(0,-2√3)和椭圆C:x²/a²+y²/b²=1(a>b>0)的
由已知得c=√3,2a=√[(2√3)^2+(1/2)^2]+√[0+(1/2)^2]=4,因此可得a^2=4,b^2=a^2-c^2=1,所以,椭圆方程为x^2/4+y^2=1.设过A的直线方程为y
设椭圆方程是x^2/a^2+y^2/b^2=1e=c/a=1/2a=2ca^2=4c^2=4(a^2-b^2)3a^2=4b^2P(2,3)代入得:4/a^2+9/b^2=14/(4b^2/3)+9/
(1)设椭圆E的方程为x²/a²+y²/b²=1(a>b>0),由e=c/a=√(2/3)得,a²=3b².故椭圆方程为x²+3y
椭圆的方程是x2/4+y2/2=1吧,我就照这样做了(x2即x的平方)设PQ坐标分别为(x1,y1),(x2,y2)MF=a+ex=2+((根号2)/2)*1又因为等差数列得2MF=FP+FQ=(a+
最后一问答案是原点为圆心,到直线AM的距离为定值,定值可以根据直角三角形面积法来求,当然要用到第二问的答案,具体思路就是这样,我也是刚刚想出来再问:为什么原点是圆心啊再答:圆心在原点是思考的时候猜想的
(1)、解得:a=2,b=1,椭圆方程:x2/4+y2=1(2)、因为L垂直坐标轴,所以,Ya=-Yb=r或Xa=-Xb=r,假设L垂直x轴,那么A点坐标(Xa,Ya)可化为(r,r),带入方程求得:
e=c/a,a=3,c=√6,b=√3x^2/9+y^2/3=1或者e=c/a,b=3,a=3√3,c=3√2y^2/27+x^2/9=1
c=√3,F1(0,-√3),F2(0,√3),点M(-√13/4,√3/2)MF1=√(13/16+27/4)=11/4MF2=√(13/16+3/4)=5/4MF1+MF2=2a=4则:a=2b&
a=1e=sqrt(a^2-b^2)/a^2=sqrt(1-b^2)=sqrt(3)/3b^2=2/3椭圆方程x^2+3y^2/2=1设A(x1,y1),B(x2,y2),AB方程为y=y1+(y2-
C:x²/a²+y²/b²=1(a>b>0),焦点在x轴上椭圆C过点(0,2),那么b=2∵e=c/a=√2/2∴a=√2c又a²=b²+c
x∧2+y∧2/9=1再答:¥���Ǹ��
去这里下载吧~注册个号~很快的~而且解答得也很详细~(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E
1.由题知得2a=4,a=2,e=c/a=√2/2,c=√2,b=√(a^2-c^2)=√2椭圆方程是x^2/4+y^2/2=1.2.设动点P坐标为(x,y)则由动点P关于直线y=2x的对称点为P1(
由题意得a²=mb²=1∴c²=m-1∵c/a=√3/2=√m-1/√m解得m=4∴椭圆方程为x²+y²/4=1设直线方程为y-3=kx即为y=kx+
由题意得a²=mb²=1∴c²=m-1∵c/a=√3/2=√m-1/√m∴m=4∴椭圆方程为x²+y²/4=1
(1)离心率e=1/2所以a=2cb=根号3*c所以椭圆方程C:[x平方/(4c平方)]+[y平方/(3c平方)]=1即(x平方/4)+(y平方/3)=c平方因为椭圆过点P(1,3/2)所以c=1所以