已知随机变量服从参数为2的泊松分布,则随机变量x=3y平方-2的数学期望

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:10:58
已知随机变量服从参数为2的泊松分布,则随机变量x=3y平方-2的数学期望
已知离散型随机变量X服从参数为λ的泊松分布 若数学期望E(5X-1)=9 则参数λ=?

E(5X-1)=5EX-1=9->EX=λ=2期望的基本性质,和泊松分布的期望公式而已.

设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

向量与线性方程组1设随机变量服从参数为λ的泊松分布,且已知E[(X-1)(X-2)]=1,求λ.

E[(X-1)(X-2)]=E[X^2-3X+2]=EX^2-3EX+2EX=λDX=λEX^2=DX+(EX)^2=λ+λ^2即λ^2-2λ+2=1得λ=1

已知离散型随机变量X服从参数为2的泊松分布,Y=12-3X,则D(Y)= .

对于方差,我们有以下的性质:D(aX+b)=a^2D(X)所以:D(Y)=D(-3X+12)=(-3)^2D(X)=9D(X)因为离散型随机变量X服从参数为2的泊松分布而参数为λ的泊松分布的方差为λ所

已知离散型随机变量X服从参数为3的泊松分布,则概率P{X=0}=?

你是不明白分母的那个k!0!的值在数学上通常是约定为1的,因此代入公式后的答案是P{X=0}=e^-3.

已知随机变量X服从参数为2的泊松分布,随机变量Z=3X-2,则E (Z)等于多少,

E(Z)=E(3X-2)=3·E(X)-2,因为X服从参数为2的泊松分布,所以E(X)=2,所以E(Z)=3×2-2=4.

设随机变量x服从参数为(2,P)的二项分布,Y服从参数为(4,P)的二项分布

因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=P{X=2},求P{X=4}.

P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2λ=λ^2/2λ=2P{X=4}=2^4*e^-2/4!=2e^-2/3

设随机变量X服从参数为λ的泊松分布,且已知P{X=1}=2/e²,则λ=?

λ=2由泊松分布密度函数可知:P{X=1}=e^(-λ)*λ=2/e²,可得λ=2.

设随机变量X服从参数为2的泊松分布,则E(X^2)=?

X~π(2)E(x)=2D(X)=2D(X)=E(X^2)-[E(X)]^22=E(X^2)-4E(X^2)=6

随机变量X服从参数为1的泊松分布,则E(X²)=____

P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2

设随机变量X服从参数为2的泊松分布,随机变量Y=2X-2,则E(Y)=?

泊松分布的期望和方差均为λ(就是参数).所以E(Y)=2*E(X)-2=2E(Y)=2

已知随机变量x服从参数为2的泊松分布则E(X2)=

因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\

设随机变量X服从参数为2的泊松分布,则E(2X)等于?

参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:

设随机变量X服从参数为4的泊松分布,则DX =____________.

泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m