已知随机变量X-U(0,1),当给定X=x求fX(x)的密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:05:27
已知随机变量X-U(0,1),当给定X=x求fX(x)的密度函数
根据EX求EY已知X-U(0,1),随机变量X服从均匀分布,随机变量Y=X的平方.EX=1/2,即X的期望值1/2,求E

EX^2-(EX)^2=DX知道这个公式不?知道就会了吧...EY=EX^2=DX+(EX)^2=1+0=1

随机变量X~N(0,1),Y~U(0,1),Z~(5,0.5)且X、Y、Z相互独立,求随机变量U=(2X+3Y)(4Z-

U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,

设随机变量X>0,Y=X2-U(0,1),试求X的密度函数fx(x)

/>这里要使用这个公式:如果X=g(Y),且g在X可能值得集合上存在可导反函数,则X,Y的密度函数有如下关系:题目有一点不太清楚.如果Y=X^2(Y是X的平方)的话:因为X>0,所以在(0,1)

急!随机变量X~U(0,1)是什么意思啊?X~Exp(1)又是什么意思?

U(0,1)是在(0,1)内x服从平均分布Exp(1)即X服从指数分布,且参数λ=1

设随机变量X~U(0,1).求随机变量z=x/(1+x)的密度函数

你好,我们先把Z写成X的函数的形式,Z=g(X).发现这个函数在(0,1)上存可逆可导.这样我们可以利用X的密度函数以及g的反函数的倒数求出Z的密度函数.具体步骤如下:最后结果是在(0,0.5)这个区

已知随机变量X的期望EX=U,方差DX=&^2,随机变量Y=(x-u)/&,求EY和DY

EY=0DY=1EY=E(x-u)/&=(EX-U)/&=0DY=D[(X-U)^2]/(&^2)而D[(X-U)^2]=E[(X-U)^2]-[E(X-U)]^2=E[(X-U)^2](后面项为0)

设随机变量X~U(0,1),求Y=X^2的概率密度

先求分布函数,对其求导,就获得概率密度函数;因为概率密度函数积分可以获得分布函数.p(x)=1,when0

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设随机变量X~U(0,1),当给定X=x时,随机变量Y的条件概率密度为fy|x(y/x)={x 0

f(x)=1,0≤x≤1; = 0, 其余.f(y|x)=x, 0<y<(1/x); = 0, 其余.f(x,y)=f

设随机变量X~U(0,1),求Y=X²的概率密度

P{Y≤y}=P{x^2≤y}=P{-√y≤x≤√y}=1-2P{x≥√y}=1-2(1-P{x≤√y})=-1+2P{x≤√y}2F(√y)-1fY(y)=[F(√y)]'=f(√y)/2√

设随机变量X~U(0,π),求:随机变量 Y=2X+1的密度函数...

X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,

设随机变量X~U(0,1),求Y=1/X的概率密度函数

再问:后面的的1-1/y怎么到最后的答案再答:求导啊,密度函数就是分布函数求导

设随机变量X~U(0,1) 求Y= -2ln(x 概率密度

Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(

随机变量X~U(0,1),

随机变量X服从区间(0,1)上的均匀分布