已知随机变量(x,y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:42:12
2X~N(2,8),3Y~N(0,27),则2X+3Y-Z~N(0,36),即标准差为6,期望为0.化为标准正态W=1/6*(2X+3Y-Z)那么概率就等于P(0≤W≤1)=Φ(1)-Φ(0)=0.8
思路是对的,不过最后y的密度是乘以1/2吧,求导有问题.
根据协方差的性质来啊COV(aX,bY)=abCOV(X,Y),(a,b是常数)18
1满足线性关系,相关系数一定为1了2X+Y~N(3,9)P(X+Y)>3=0.5通用方法是查表中{(3-3)/(根号9)}万一不是这麼正好的数你就没这麼好运气再答:���ˣ�1����-1������
不是相互独立的
再问:x的区间为什么是0到Z/2呢
x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)
只帮你解一问吧,其他的类似:(U,V)共四组取值,(0,0),(0,1),(1,0),(1,1)P{U=0,V=0}=P{X+Y
把F(X,Y)求出来就可以了~
5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,
是的,就是这样求的.再问:还可以二重积分那样求呢再答:二重积分求也是类似于‘先求出X的边缘概率密度,然后按照一维随机变量计算期望’只不过二重积分把‘先求出X的边缘概率密度,然后按照一维随机变量计算期望
【分析】此题应分两步1.首先搞清楚z、x、y与fz(z)的关系.x、y其实可看作事件,而z=x+y就是x和y的组合事件f(x,y)其实就是事件x和y交集的概率,亦即是概率函数P(XY)∴边缘概率密度f
表明随机变量X、Y所对应的事件都是不可能事件,事件发生的概率为零,概率密度函数也为零.
再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三
先求Z=X^2的概率密度F(Z)=P(X^2≤z)=P(-z^0.5≤x≤z^0.5)=f(x)从-z^0.5到z^0.5的积分然后F(Y)=1-P(X>y,X^2>y)最后f(Y)=F'(Y)整体思
(1)P(X>2,Y≤2)=P(X=3,Y=2)+P(X=3,Y=1)+P(X=3,Y=0)=5/30+4/30+3/30=2/5(2)P(X>Y)=P(X=1,Y=0)+P(X=2,Y≤1)+P(X
P{X>1/2|Y>0}=P{X>1/2,Y>0}/P(Y>0)分子利用积分联合分布得到1/8而分母积掉Y的边缘分布得到1/2所以最后的答案是1/4
尝试一下~ 如果有误,还请指正~
似乎前面的过程都没有问题,但是最后一步求导错了啊,结果应该是f(x)=1/[2π(1+x^2/4)]吧,求导加的1/2没去掉,而且前面还要乘以一个1/2
P{max(X,Y)