已知锐角三角形ABC中,角A等于60度,BD和CE都是三角形ABC的高
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:23:13
(1)因为cos2C=cos(C+C)=(cosC)平方-(sinC)平方=-3/4(cosC)平方+(sinC)平方=1得(sinC)平方=7/8所以,sinC=根号14/4(2)
cos2C=1-2sin^2C=-3/4则sin^2C=(1+3/4)/2=7/8sinC=√14/4当c=2a且b=3√7时,由cosC=√(1-sin^2C)=√2/4所以在三角形中,由余弦定理得
假设a=135因为b=2c所以c>=45所以b>=90与条件中的锐角三角形矛盾所以假设不成立所以a>45
证明:(1)以A点为顶点,做一条垂直于BC的高AD;∵AD=AC*sinC=bsinC∴S(△ABC)=1/2*BC*AD=1/2*absinC(2)三角形ABC的面积S=1/2absinC=1/2*
证明:假设A《45,那么B+C》180-45所以3C》135所以C》45度B》90度所以该三角形为直角三角形或钝角三角形,与题目相矛盾,所以假设不成立,所以A>45度
∵角A角B的二倍∴B/A等于1/2特别简单,只要仔细审题
tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC)由均值不等式,3=tanB+tanC>=2根号下(tanBtanC)所以tanBtanC=-3/(1-9/4)=12/5
因为a>b>c所以sina>sinb>sinc由二倍角sina>sinb>sinc,sina^2>sinb^2>sinc^21-cos2a>1-cos2b因为角为钝角,所以平方后要变号cos2a^2>
向量m*n=1/2-cosA/2*cosA/2+sinA/2sinA/2=1/2cos^2(A/2)-sin^2(A/2)=-1/2cosA=-1/2A=120度S=1/2bcsinA=√3bc*√3
(I)∵sin(A+B)=sinAcosB+cosAsinB=35①sin(A−B)=sinAcosB−cosAsinB=15②①+②得:2sinAcosB=45,∴sinAcosB=25③cosAs
sin(A+B)=3/5,sin(A-B)=1/5则:sin(A+B)=3sin(A-B)sinAcosB+cosAsinB=3sinAcosB-3cosAsinB2sinAcosB=4cosAsin
c>a>bc-b=24a+b+c=180c=24+ba+2b+24=180b=78-0.5ac=102-0.5a102-0.5a>aa78-0.5aa>5252
由c^2=a^2+b^2-ab=a^b+b^2-2abcosC(余弦定理)知cosC=1/2=>C=60度由tanA-tanB=√3/3(1+tanAtanB)知(tanA-tanB)/(1+tanA
平行线分线段成比例定理的问题,不是全等过点C作CE//AD交BA的延长线于点E.则∠E=∠BAD=∠DAC=∠ECA,所以,AE=AC.由CE//AD还可得BD/DC=AB/AE,所以BD/DC=AB
2sinc/cosc=-根3/cosc,整理得sin2c=-根3cos2c,tan2c=-根3得c==150或60,因为是锐角三角形,所以c=60c^2=a^2+b^2-2abcosc代入数值,得c=
cosA=(b^2+c^2-a^2)/2bc=1/2,则A=60度
在三角形ABC中,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R又:bsinB-asinA=(b-c)sinC则:b*(b/2R)-a*(a/2R)=(b-c)*(c/2R)b^2-a
高中数学:在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,满足a用余弦定理换掉(a平方+c平方-b平方)的2accosB,sin(A+B)=sin(180
有正弦定理可知,a/c=sinA/sinB,又因为A=2C,所以a/b=sin2C/sinC=2COSC又因为是锐角三角形A=2C
(sinA+cosA)^2=1+sin2A=49/169sin2A=120/169sin2A=2*sinA*cosA=120/169sinA*cosA=60/169sinA*√(1-sinA^2)=6