已知锐角ABC和角内部的圆O,在圆o上确定点D,使三角形dmn周长最小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:26:41
已知锐角ABC和角内部的圆O,在圆o上确定点D,使三角形dmn周长最小
(1)在直角三角形ABC中,两个锐角的角平分线AO,BO相交于点O,求

这题出的有问题,角AOB应该等于135度,不可能等于3倍角C,角C是90度,3倍角C就是270度了,三个内角和才180度呢,可能吗?

已知三角形ABC中,AB等于AC,点O在三角形ABC的内部,角BOC等于90度,OB等于OC,

参考:http://www.jyeoo.com/math/ques/detail/51606f57-450b-4869-a5e3-753141ed2c46

已知三角形ABC三边abc的倒数成等差数列,证明:角B为锐角

设三边为a,b,c则cos∠B=(a^2+c^2-b^2)/(2ac)由1/a-1/b=1/b-1/c得到(a+c)b=2ac因为a+c≥2√(ac)所以b≤√(ac)所以b^2≤ac<2ac≤a^2

在三角形ABC中已知a、b、和A为锐角时.解的情况如下、a

过点C做边AB的高CD,bsinA.就是这条高的长,三角形ACD中,a为斜边,bsinA为直角边,所以:a

如图,圆O过点B,C,圆心O在等腰直角三角形ABC的内部,角BAC=90度,OA=1,BC=6,求圆O的半径.

过A作AD垂直于BC,由AD必过圆心O,因为三角形ABC为等腰直角三角形,所以AD=1/2BC=3,又因为OA=1,所以OD=2,所以圆的半径平方=3的平方-2的平方,计算可得:圆的半径=根号5.

在三角形ABC内部一点O是它的外心BC=24,O到BC得距离是5,求三角形ABC的外接圆的半径,三角形是直角锐角钝角

做OD垂直BC于D,则OD=5,BD=24/2=12,由勾股定理可得半径OB=13.该三角形为锐角…要知道锐角三角形的外心在里面,直角的在斜边中点,顿角的在外面

已知点O在△ABC内部,且有OA+2OB+4OC=0

如图,作向量OC′=4OC,OB′=2OB,OA′=−OA.则S△OBC=14S△OBC'=18S△OB'C'=18S△OB'A'=18S△OB'A=14S△AOB.故答案为4:1

(1)直角三角形ABC中,两个锐角的平分线AO,BO相交于点O,求角AOB的度数

三角形内角和是180,那么在RT三角形ABC中:角A+角B=90,又2个角平分线,所以,角OAB+角OBA=(角A+角B)除以2=90除以2=45在由三角形OAB内角为180,所以,角AOB=180-

不用建立坐标系的方法等腰直角三角形ABC和圆O如图放置,已知AB=BC=1,角ABC=90度,圆O的半径为1,圆心O与直

不做图笔述比较复杂.(1)、作图,平移三角形ABC与圆O的左侧在BC边相切,表示为三角形A‘B’C‘,其中B’C‘与圆O相切于点E,过O做B’C‘垂线,交B’C’延长线于D,连接OC‘,此时为三角形A

如图,已知锐角△ABC中,AB,AC边的中垂线交于点O,

中垂线交于点O,所以AO=BO=CO,∠OAB=∠OBA,∠OCA=∠OAC;所以∠AOB+∠AOC=(180°-∠OAB-∠OBA)+(180°-∠OAC-∠OCA)=(180°-2∠OAB)+((

已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.

(1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴18

在等边三角形abc中,点o为bc边的中点,将三角形abc绕o顺时针方向旋转角a(a是锐角)后得到三角形a1b1c1,

垂直.连接OAOA1,作C1H垂直AA1延长线于H则有:角AOA1和COC1=a所以:角AA1O=角CC1O又因为A1O垂直B1C1即:角A1OC1=90°根据四边形内角和360所以:角A1HC1=9

如图,已知锐角△ABC的外心为O,线段OA、BC的中点分别为点M、N,角ABC=4角OMN,角ACB=6角OMN.求角O

作MN平行于AQ,交圆o于Q,连NQ设∠OMN=X所以∠ABC=4X,∠ACB=6X因为MN平行于AQ所以∠OAQ=X因为∠AOC=2∠ABC=8X所以∠OAC=(180-8X)/2=90-4X因为∠

如图,已知锐角△ABC的外心为O,线段OA和BC的中点分别为点M,N.若∠ABC=4∠OMN,

设∠OMN=x,则∠ABC=4x,∠ACB=6x;∴∠NOC=180°-10x,∠AOC=8x,∴∠ONM=180°-(180°-10x+8x+x)=x,∴△MON为等腰三角形,∴ON=OM=12OA

如图,已知△ABC中,AB=AC,点O在△ABC的内部,∠BOC=90°,OB=OC,D,E,F,G分别是AB,OB,O

(1)延长AO交BC于H,∵AB=AC,OB=OC,∴H是BC中点,AH⊥BC.由D,E,F,G分别是AB,OB,OC,AC中点,∴DE∥AO,DE=(1/2)AO,GF∥AO,GF=(1/2)AO,

已知O是正三角形ABC内部一点,向量OA+2向量OB+3向量OC=0,则三角形OAC与三角形OAB的面积之比是?

分别延长OB到B1,OC到C1,使OB1=2OB,OC1=3OC∵OA+2OB+3OC=0∴OA+OB1+OC1=0∴O为△AB1C1的重心∴S△OAB1=S△OAC1∴S△OAC:S△OAB=(S△

等腰直角三角形ABC和圆O如图放置,已知AB=BC=1,角ABC=90度,圆O的半径为1,圆心O与直线AB的距离为5.现

先说思路:三角形ABC追过去首先和他相切的肯定是AC然后有可能是AB或者是AC(与BC相切直接不管)最后肯定是AB...开始解题以直线BC为X轴BA为Y轴B为原点建立平面直角坐标系则时间t后:c坐标(

如图,在△ABC中,O为其内部一点,比较∠BOC和∠A的大小.

延长BO交AC于点D,∵∠ODC是△ABD的外角,∴∠A+∠ABD=∠ODC.∵∠BOC△ODC的外角,∴∠BOC=∠ODC+∠OCD,∴∠BOC=∠A+∠ABD+∠OCD,∴∠BOC>∠A.