已知逆矩阵的特征值,怎么求矩阵的特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:33:21
关于逆矩阵的特征值,你说的是对的.E+2A的特征值是1+2*A的特征值行列式等于特征值的乘积再问:也就是说,E+2A的特征值是3,-3,-5,对吧?所以,行列式E+2A的值等于3*(-3)*(-5)=
A^{-1}的特征值恰好是A的特征值的倒数事实上det(xI-A)=det(xA)det(A^{-1}-x^{-1}I)好好看教材吧,这种是基本问题,不会很不应该
z直接写了,A就是阶梯型矩阵了,主对角元素就是特征值了λ=1,2
以它的特征值为对角元素构造对角矩阵B,以相应的特征向量为列向量,构造矩阵P,则AP=PB,所以A=PB(P逆)
A1 =[ 1, 1/3, 1, 1/5, 1/4][ 3, 1, 2, 1
这个问题就复杂了.如果知道一个特征值的特征向量的话,很多时候都是不可求的,少数是可求的.可求的情况:矩阵为对称矩阵,无其他的特征值于知道特征向量的特征值相同时,且其他的特征值相同,可求因为不同的特征值
特征量作为列向量组成一个可逆矩阵P,相应的特征值作为对角线元素组成一个对角矩阵B,则AP=PB,所以A=PB(P逆),入18题如果矩阵A对称,则已知条件中的特征向量不必全部给出,根据不同特征值对应的特
相关知识点:1.方阵A的迹(即主对角线元素之和)等于A的所有特征值之和2.方阵A的行列式等于A的所有特征值之积若不能解决问题,可直接计算|A-λE|求出A的特征值
由于Aα1=λ1α1,Aα2=λ2α2,所以A[α1α2]=[α1α2]diag(λ1λ2),其中[α1α2]为由两个特征向量作为列的矩阵,diag(λ1λ2)为由于特征值作为对角元的对角矩阵.记P=
矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦
A-vE=|3-v1|=v^2-2v-8=(v-4)(v+2)|5-1-v|特征值为:4,-2.对特征值4,(-11;5-5)*(x1,x2)'=(0,0)'对应的特征向量为:(1,1);对特征值-2
第一步,求特征值第二步,求特征向量,对应可逆矩阵具体请看图片再答:再答:
(4,2,1(1(1x,1,2*-2=r*-2(设特征值为r)3,y,-1)3)3)则可得(3(1x+4=r-2所以3=r,x+4=-2r,-2y=3r-2y)3)可解得:x=-10,y=-9/2
|A-λE|=1-λ2321-λ3336-λr1-r2-1-λ1+λ021-λ3336-λc2+c1-1-λ0023-λ3366-λ=(-1-λ)[(3-λ)(6-λ)-18]=(-1-λ)[λ^2-
symst;a=[010;001;00-t];eig(a)
设λ是A的特征值,α是A的属于特征值λ的特征向量则Aα=λα.等式两边左乘A*,得A*Aα=λA*α.由于A*A=|A|E所以|A|α=λA*α.当A可逆时,λ不等于0.此时有A*α=(|A|/λ)α
这个简单嘛,只要把三特征向量构成矩阵P P=(x1,x2,x3)因为p^-1Ap等于三个特征值对应的对角矩阵,记为B1 0 00 0 0 0 0 -1则p^-1Ap=B可得A=pBp^-1既然问这题,
设特征值矩阵为V,你只要构造出一个随机的单位正交矩阵U,则UVU'即为满足条件的矩阵:V=diag([123]);U=orth(rand(3));A=U*V*U再问:试了以下,为什么求出的A,通过ei
把线代矩阵那一章的书上习题先看熟了再问!再问:再问:话横线那一步怎么得出的再答:那么简单的三阶行列式你难道不会化吗?再问:那您说怎么化再答:再答:SoEasy啦,线代这本书一个礼拜都不用就可以精通了,
这与已知A求A^-1是一样的这是因为A=(A^-1)^-1A=abcd利用公式A^-1=(1/|A|)A*其中:|A|=ad-bcA*=d-b-ca注记忆方法:主对角线交换位置,次对角线变负号