已知给定的对称矩阵A和B合同,求一个可逆矩阵C使得CAC=B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:56:17
由已知A^T=A,B^T=B所以(A+B)^T=A^T+B^T=A+B(A-2B)^T=A^T-2B^T=A-2B所以A+B,A-2B是对称矩阵再问:可以变成图片的方式吗,写在纸上?再答:^T是转置记
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可
矩阵A与矩阵B等价是A与B合同的必要条件,但不是充分的.因为矩阵A与矩阵B等价是存在可逆矩阵P,Q.使得PAQ=B,而A与B合同是存在可逆矩阵C,使得C'AC=B,可见合同是特殊的等价.
一楼正解一个具体的方法:A=A*A^-1*A(A可逆)=A^T*A^-1*A(A对称)
你都说是正交变换了,相同特征值的线性无关的特征向量必须作正交单位化的.如果只要求合同矩阵,那就不必要的.再答:��ʮ���ѧ���飬רҵֵ��������������Ͽ��ҵĻش
由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是
构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,
条件表明A'=AB'=BA'B'表示转置故(A+B)'=A'+B'=A+B(A-2B)=A'-2B'=A-2B两式表明A+B,A-2B也都是对称矩阵
如果A和B是Hermite矩阵且相似,那么A和B合同,因为它们酉相似.实数域上类似.但是一般的域不保证.如果不是Hermite矩阵,那么相似不保证合同.无论如何合同是无法推出相似的,Hermite正定
合同于对角阵的一定是对称阵,分析如图.经济数学团队帮你解答,请及时采纳.
这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
不一定合同的充是相同的正负惯性指数,相加以后的正负管性指数不确定再问:能给出证明吗?再答:不好证,看老刘的例子吧
有非常多其中一个就是它本身定义:若B=C'AC,C可逆,则可以说明A,B矩阵是合同矩阵,C'比表示C转置
是,非对称阵不讲合同
这种题99%都选合同但不相似,因为相似的矩阵一定是合同的,因此相似但不合同这个选项永远也不会是对的,而给两个矩阵,既合同又相似,或者既不合同又不相似,从出题人的角度讲出这种题意义不大,所以看到这种题就
令C为数量矩阵√8E,即主对角线上全是√8其余都是0的矩阵则C'=C可逆因为数量矩阵与所有矩阵都可交换所以有C'AC=CAC=C^2A=8A.即A与8A合同.
(=>)因为A正定,所以X^TAX的规范形为y1^2+...+yn^2所以存在可逆矩阵C满足C^TAC=E所以A合同于单位矩阵(再问:为什么从规范形得出存在可逆矩阵C,满足那个式子?谢谢老师:)