已知线性变换A有一个特征值为2,则可求线性变换A∧2 3A的一个特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 16:57:47
∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特
|A|=其特征值的乘积8/(-1)/4=-2
有个定理,B的特征值为λ^2-λ+2=4再问:什么定理?可以写详细点吗?再答:首先把A做变换得到若当标准型A=RTCRR为正交阵,RT为其转置,C叫啥忘了,由若当块组成,A的特征值就在C对角线上。B=
|3A+2E|=0,故(-3)^3|-A-2/3E|=0,|-2/3E-A|=0,A必有一个特征值-2/3
由于矩阵A,B分别为3维线性空间V中的线性变换T在某两组基下的矩阵,因此A与B相似∴A与B具有相同的特征值∴1,-2为也B的特征值又B的所有对角元的和为5,即B的所有特征值之和为5又由题意知,B为三阶
属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一
设r1,r2,r3分别为三个特征值,则,r1*r2*r3=|A|所以另一特征值为-2
第一个是平方吗?如果是的话:2的平方加上2乘以2加3,即11如果Ax=ax,a为特征值.则A2x=a2x,A-1x=1/ax,A*x=|A|/ax
特征值a,特征向量(1,1,...1)'因为A(1,1,.1)'=(a,a,...a)'=a(1,1,...1)'
2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值
三个问题走起:(1)若A的特征值为λ,则f(A)的特征值的f(λ).这个是个重要结论,可以通过定义Aξ=λξ证明.设f(A)=A²+E,那么f(λ)=λ²+1,于是A²+
由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值
第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2
对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(
利用特征值与矩阵多项式的关系可求解若A有特征值x,则A的多项式f(A)的特征值为f(x)A的行列式为-2,A*=|A|A^(-1)=-2A^(-1),A*有一个特征值为6,即知A有一个特征值满足-2x
结论是错的,因为A的特征值还可以是零,这不是虚数.正确的讲法是实反对称线性变换(或矩阵)的特征值的实部都是零.证明很容易,若A是实反对称矩阵,那么iA是Hermite阵,iA的特征值都是实数.再问:高
任意n次多项式有n复根,而特征方程就是个多项式
他的特征值是50这个题有个公式就是,A^2的特征值是5的平方.在乘以2就是50