已知线性变换A有一个特征值为2,则可求线性变换A∧2 3A的一个特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 16:57:47
已知线性变换A有一个特征值为2,则可求线性变换A∧2 3A的一个特征值
设A为n阶可逆矩阵,已知A有一个特征值为2,则(2A)的逆必有一个特征值为?

∵A的特征值为a∴Ax=ax两遍同乘以A^(-1)得:x=aA^(-1)x∴A^(-1)x=(1/a)x,∴A的逆矩阵的1/a又∵A的特征值为2,则2A的特征值为2*2=4,∴(2A)的逆矩阵的一个特

设方阵A有一个特征值λ=2,试证明:方阵B=A^2-A+2E有一个特征值为4.

有个定理,B的特征值为λ^2-λ+2=4再问:什么定理?可以写详细点吗?再答:首先把A做变换得到若当标准型A=RTCRR为正交阵,RT为其转置,C叫啥忘了,由若当块组成,A的特征值就在C对角线上。B=

9.设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( )

|3A+2E|=0,故(-3)^3|-A-2/3E|=0,|-2/3E-A|=0,A必有一个特征值-2/3

设矩阵A,B分别为3维线性空间V中的线性变换T在某两组基下的矩阵,已知1,-2为A的特征值,B的所有对角元的和为5,则矩

由于矩阵A,B分别为3维线性空间V中的线性变换T在某两组基下的矩阵,因此A与B相似∴A与B具有相同的特征值∴1,-2为也B的特征值又B的所有对角元的和为5,即B的所有特征值之和为5又由题意知,B为三阶

n阶矩阵的线性变换线性变换t(A)=A',A为n阶方阵,那么t的特征值怎么算呢?属于特征值1的特征子空间的维数和一组基怎

属于特征值1的特征子空间是所有对称矩阵所成的空间,维数n(n+1)/2,基自己求吧,结果不唯一再问:那维数是怎么算的呢?再答:写出基就知道了再问:可是题目讲t的特征值为-1和1是怎么得到的呢?麻烦写一

设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为

设r1,r2,r3分别为三个特征值,则,r1*r2*r3=|A|所以另一特征值为-2

已知三阶矩阵A有一个特征值是2,则A2+2A+3E必有一个特征值为

第一个是平方吗?如果是的话:2的平方加上2乘以2加3,即11如果Ax=ax,a为特征值.则A2x=a2x,A-1x=1/ax,A*x=|A|/ax

设2为矩阵A的一个特征值,则矩阵3A必有一个特征值?

2为A的一个特征值,根据定义,|2E-A|=03|2E-A|=0|6E-3A|=0根据定义,6是矩阵3A的一个特征值

线性代数中的几个问题已知A的特征值为-1,1,2∴A²+E的特征值为2,2,5,为什么?秩特征向量之间到底有什

三个问题走起:(1)若A的特征值为λ,则f(A)的特征值的f(λ).这个是个重要结论,可以通过定义Aξ=λξ证明.设f(A)=A²+E,那么f(λ)=λ²+1,于是A²+

已知λ=2是可逆矩阵A的一个特征值,则(1/2A^2)^-1有怎样的一个特征值

由已知(1/2)2^2=2是(1/2)A^2的特征值所以1/2是((1/2)A^2)^-1的特征值

设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;

第一问:设ξ是线性变换T的任一个特征向量,对应的特征值是λ,则有Tξ=λξ,两边左边用T作用,得T^2(ξ)=T(Tξ)=λTξ=λ^2ξ,而由已知,T^2=I,故λ^2ξ=ξ,因为ξ≠0==>λ^2

已知三阶矩阵A特征值为1 2 -3

对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(

设三阶方阵A的行列式为-2 A*有一个特征值为6 5A^-1-3A必有一个特征值为?思想即可

利用特征值与矩阵多项式的关系可求解若A有特征值x,则A的多项式f(A)的特征值为f(x)A的行列式为-2,A*=|A|A^(-1)=-2A^(-1),A*有一个特征值为6,即知A有一个特征值满足-2x

A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数

结论是错的,因为A的特征值还可以是零,这不是虚数.正确的讲法是实反对称线性变换(或矩阵)的特征值的实部都是零.证明很容易,若A是实反对称矩阵,那么iA是Hermite阵,iA的特征值都是实数.再问:高

请问任意一个线性变换都会有特征值及特征向量吗?

任意n次多项式有n复根,而特征方程就是个多项式

.若矩阵A有特征值5.则2A的平方必有一个特征值是多少?

他的特征值是50这个题有个公式就是,A^2的特征值是5的平方.在乘以2就是50