已知等腰直角三角形abc和等腰直角三角形cde,AB=BC,CD=DE,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:15:52
把直线AE、BE、AD逆时针旋转90°,则A旋转到C点,B、E对应点分别为B'、E'.△ABE全等于△CBE',BD=BD'.连接MD',下面证明D、M、D'在一条直线上.因为EB、CD'都垂直于BE
证明:过点C作CF∥ED,与DM的延长线交于点F,连接BF,可证得△MDE≌△MFC,∴DM=FM,DE=FC,∴AD=ED=FC,作AN⊥EC于点N,由已知∠ADE=90°,∠ABC=90°,可证得
应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于
证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=
解题思路:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度
延长EC到点F,使EF=DE,连接AF则△ADF是等腰直角三角形∴∠BAC=∠DAF=90°∴∠BAD=∠CAF∵AB=AC,AD=AF∴△ABD≌△ACF∴∠ADB=∠F=45°∴∠BDC=45°+
图呢再问:����
过M作MN⊥BD于N,由M是EC中点,∴MN是直角梯形CBDE的中位线,∴2MN=BC+DE=BD,又N是BD中点,∴MN是BD垂直平分线,∴MB=MD.由MN=(1/2)BD,∴∠BMD=90°(三
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
以C为圆心,BC为半径画圆,在圆中作一个最大的正方形.题中阴影部分面积=﹙圆面积-正方形面积﹚÷8=﹙3.14×6×6-12×12÷2﹚÷8=5.13cm²
解题思路:见附件解题过程:附件最终答案:略
1、∵M是BC的中点,延长AM到F,使AF=2AM,连接BF,由AF与BC互相平分易证△BMF≌△CMA,得BF=AC,∠MBF=∠MCA,随之BF∥AC,∠ABF=180°-∠BAC;∵∠BAD=∠
等腰直角三角形ABC和等腰直角三角形BCD平面互相垂直]所以AB⊥BCAB⊥BDBC⊥BDAB=BC=CD=1,构造成一个正方体四面体ABCD外接球的直径为正方体的体对角线d=√3四面体ABCD外接球
证明:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=
①∠EDC=90°∠CAE+∠DAC=∠BAD+∠DAC=90°∴∠CAE=∠BAD在△AEC和△ADB中,AC=AB,AD=AE,∠CAE=∠BAD∴△AEC≌△ADB(边角边)∴∠ACE=∠B=4
APC绕点C逆时针旋转90°,得△BCO,连结OP由于BC=AC,所以BC与AC重合,亦即点A落到点B处根据辅助线的作法可知△ACP≌△BCO∴∠BCO=∠ACP,∠BOC=∠APC,BO=PA=1,
连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
,没有图额,图在哪?