已知等比数列满足a1a31

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:52:03
已知等比数列满足a1a31
(2013湖北)已知等比数列{a_n}满足:{a_2-a_3

解题思路:I)设等比数列{an}的公比为q,结合等比数列的通项公式表示已知条件,解方程可求a1,q,进而可求通项公式(Ⅱ)结合(I)可知{1an}是等比数列,结合等比数列的求和公式可求1a1+1a2+

已知等比数列{an}满足a2+a4=30,a3=12

a2a4=a3*a3=144a2+a4=30a2=6a4=24q=2a1=3an=3*2^(n-1)或者a2=24a4=6q=1/2a1=48an=48*(1/2)^(n-1)数列{an}单调递增q>

已知等比数列{an}满足a3=12,a8=38,记其前n项和为Sn.

(1)∵等比数列{an}满足a3=12,a8=38,∴a1q2=12a1q7=38,解得q=12,a1=48,an=a1qn−1=48×(12)n-1.(2)Sn=48×(12)n-1=93,∴(12

已知等比数列an,首项为81,数列bn满足bn=log3an,其前n项和sn

1设an工笔qbn-bn-1=log3an-log3an-1=log3(an/an-1)=log3q=d所以bn为等差数列2b1=log3a1=4由题意可知d

已知等比数列{an},an

a3^2+2a3*a5+a5^2=49(a3+a5)^2=49a3+a5=7再问:-7把再答:嗯忘看了an

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列

lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列

已知公差不为零的等差数列{an}满足a5=10,且a1,a3,a9成等比数列.

(1)由题意,设公差为d,则a1+4d=10(a1+2d)2=a1(a1+8d)∴a1+4d=104d2=4a1d∵d≠0,∴a1=2,d=2∴an=2+(n-1)×2=2n;(2)由(1)知,Sn=

已知等比数列{an}中,首项是81,数列{bn}满足bn=logan,其前n项和Sn.

(1)等比数列{an},首项为81设an=a1*q^(n-1)=81*q^(n-1)数列{bn}满足bn=log3为底an∴bn=log3为底[81*q^(n-1)]=log3为底81+log3为底q

已知等比数列

解题思路:先求出通项an解题过程:最终答案:略

已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项

因为an=2^n,所以log21/an(2为角标)=-n所以bn=2^n-nSn=2-1+2^2-2+2^3-3+...+2^n-n=(2+2^2+2^3+...+2^n)-(1+2+3+...+n)

已知数列{An}满足lgAn=3n+5,证明An是等比数列.

lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助

已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列 lgan=3n+5

a(n+1)/an=10∧[(3n+8)-(3n+5)]=10∧3再问:那为什么a(n-1)=10^(3n+2)回答这个之后马上好评求解!!再问:或者a(n+1)=10^(3n+8)再问:懂了!!

已知等比数列an满足:a1+a2+a3+a4+a5=3,则a1-a2+a3-a4+a5的值是

设公比为q,q≠1∵a1+a2+a3+a4+a5=3a1²+a2²+a3²+a4²+a5²=12(a1²,a2²,a3²

已知数列{an}满足Sn=2n-an(n属于N*),证明{an-2}是等比数列

Sn=2n-an,(1)S(n+1)=2*(n+1)-a(n+1)(2)(2)-(1)得:a(n+1)=2-a(n+1)+an.即:2*a(n+1)=2+an.变形:2*[a(n+1)-2]=an-2

已知数列an满足bn=an-3n,且bn为等比数列,求an前n项和Sn

n=b1.q^(n-1)bn=an-3nan=bn+3n=b1.q^(n-1)+3nSn=a1+a2+...+an=b1(q^n-1)/(q-1)+3n(n+1)/2

已知等比数列{an}满足a1+a2=3,a3+a4=6,则a7+a8=______.

∵等比数列{an}满足a1+a2=3,a3+a4=6,∴a1(1+q)=3a1(1+q)•q2=6,解得q2=2,∴a7+a8=a1(1+q)•q6=3•23=24.故答案为:24.

已知正项等比数列{an}满足log2 a1+log2 a2+...+log2 a2009=2009,则log2(a1+a

log2(a1a2*……*a2009)=2009a1a2*……*a2009=2^2009a1a2009=a2a2008=……=a1004a1006=(a1005)²所以a1a2*……*a20

已知等比数列an,首项bn满足bn=log3an,其前n项和为Sn

已知等比数列an,首项为81,数列bn满足bn=log3an,其前n项和sn(1)证明:bn-b(n-1)=log(3)an-log(3)an-1=log(3)an/a(n-1)=log(3)q∵b1