已知等差数列的公差d>0,设{an}的前n项和为Sn,a1=1,S2.S3=36
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:56:12
设公差为d则有(1+d)*(1+13d)=(1+4d)(1+4d)推出d=2;所以an=1+2(n-1);Sn=n*n
(Ⅰ)由a1=1,S2•S3=36得,(a1+a2)(a1+a2+a3)=36,即(2+d)(3+3d)=36,化为d2+3d-10=0,解得d=2或-5,又公差d>0,则d=2,所以Sn=na1+n
∵an为等差数列a1,a3,a9成等比数列∴a1(a1+8d)=(a1+2d)^2a1^2+8d*a1=a1^2+4d*a1+4d^2d≠0∴d=a1a1+a3+a9/a2+a4+a10=(a1+a1
a1^2=a11^2,∴a1=-a11a1=-(a1+10d)2a1=-10da1=-5dan=a1+(n-1)d=-5d+(n-1)d=(n-6)d∵d0,a6=0,a7
a1,a3,a9成等比数列a3^2=a1*a9(a1+2d)^2=a1*(a1+8d)解得a1=d(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=
设等差数列的公差为d,则a3=a5-2d=6-2d,an1=a5+(n1-5)d=6+(n1-5)d.∵a3,a5,an1成等比数列,∴a52=a3an1化简即(6n1-42)d-2(n1-5)d2=
a2+a4=2*a3=8a3=4,a4=3因此a1=6,d=-1通项为an=6-(n-1)=7-n
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn
ak=48+2kbk=10+(k-1)dSk=(48+2k)[10+(k-1)d]令SK≤21即(48+2k)[10+(k-1)d]≤21求出k来.再问:最大圆面积为Sk
a1,a5,a17是等比数列(a1+4d)^2=a1*(a1+16d)a1^2+8a1d+16d^2=a1^2+16a1d8a1d=16d^2d不等于0a1=2dq=a5/a1=(a1+4d)/a1=
因为{An}是等差数列,所以A2+A8=A4+A6=10,A4*A6=24,所以可将A4、A6看作方程x^2-24x+10=0的两个根,因为d
Sn=na1+n(n-1)d/2S12=12a1+66dS13=13a1+78d又a3=a1+2d=12a1=12-2dS12=12(12-2d)+66d>0S13=13(12-2d)+78d
很简单的.A1+2D=12A1=12-2DS12=(A1+A12)*D/2大于0所以A1+A1+11D大于0S13小于0所以A1+A1+12D小于024-4D+11D=24+7D大于024-4D+12
由题可得A1*A9等于A3方把分子分母都写为A3和公差d的表达式有上式可得A3和d的关系带入就可的到比值
S3=S12∴S12-S3=0∴a4+a5+.+a12=0∴(a4+a12)*9/2=0∴a4+a12=0∴a8+a8=a4+a12=0∴a8=0∵d
先求An的通项就行了A1+A4=14A2A3=45d
A2=1+d=B2A5=1+4d=B3A14=1+13d=B4(B3)^2=B2×B4(1+4d)^2=(1+d)(1+13d)d^2=2dd>0d=2An=1+2(n-1)=2n-1B2=3B3=9