已知等差数列an的公差d不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:15:24
设等差数列的公差为d,a1,a3,a13成等比数列,则(a3)²=a1•a13(1+2d)²=1+12d,4d²=8d.因为公差不为0,所以d=2.从而an=
a2=a1+d,a3=a1+2d.,a6=a1+5d,...,a10=a1+9d,若a1,a3,a6成等比数列,则a3^2=a1*a6,(a1+2d)^2=a1*(a1+5d),得到a1=4d.则(a
a1^2=a11^2,∴a1=-a11a1=-(a1+10d)2a1=-10da1=-5dan=a1+(n-1)d=-5d+(n-1)d=(n-6)d∵d0,a6=0,a7
a1,a3,a9成等比数列a3^2=a1*a9(a1+2d)^2=a1*(a1+8d)解得a1=d(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
3设第一项为a,公差为da1=aa5=a+4da17=a+16d所以a5²=a1a17所以(a+4d)²=a(a+16d)a²+8ad+16d²=a²
设等差数列为a+(n-1)d于是第一项为a第五项为a+4d第17项为a+16d根据题意第1、5、17项顺次成等比数列有(a+4d)²=a(a+16d)即a²+16ad+16d
由题知:(a1+2d)(a1+14d)=(a1+8d)^2化简得到:(a1)^2+16a1*d+28d^2=(a1)^2+16a1*d+64d^236d^2=0解得:d=0因为d≠0故无解
a2+a4=2*a3=8a3=4,a4=3因此a1=6,d=-1通项为an=6-(n-1)=7-n
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
因为a5=a1+4d,a9=a1+8d,a15=a1+14d且a5a9a15成等比数列所以(a1+8d)^2=(a1+4d)(a1+14d)即(a1)^2+16a1*d+64d^2=(a1)^2+18
再问:求k1+2k2+3k3+.......+nkn=多少再答:令S=k1+2k2+...+nkn=2*[3^0+2*3^1+3*3^2+………+n*3^(n-1)]-(1+n)n/2令T=3^0+2
(a3)^2=a13*a1(a1+2d)^2=(a1+12d)*a1d-2a1=0d=2a1s1=a1s3=3a1+3d=9a1s9=9a1+36d=81a1(s3)^2=s1*s9,所以s1s3s9
a1,a5,a17为等比数列(a5)^2=a1*a17(a1+4d)^2=a1(a1+16d)16d^2-8a1d=0a1=2dan通项公式为an=a1+(n-1)d=a1+(n-1)a1/2=(n+
因为1/anan+1=1/an*(an+d)=1/d[1/an-1/(an+d)]=1/d[1/an-1/an+1]所以1/a1a2+1/a2a3+…+1/anan+1=1/d[1/a1-1/a2+1
【解】(1)方程A(k)(X^2)+2A(k+1)X+A(k+2)=0,则其Δ=4[A(k+1)^2-A(k)*A(k+2)]=4[[A(k)+d]^2-A(k)*[A(k)+2d]]=4d^2>0;
因为{An}是等差数列,所以A2+A8=A4+A6=10,A4*A6=24,所以可将A4、A6看作方程x^2-24x+10=0的两个根,因为d
再问:太给力了,你的回答完美解决了我的问题!
先求An的通项就行了A1+A4=14A2A3=45d