已知等差数列an的公差d>0,且a3a7=-12,a4 a6=-4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:15:25
还说明sn=n(a1+an)/2=0sn是关于n的没有常数项的一元二次函数,现在s(0)=s(n),可得对称轴为n/2如果n/2是整数,即n为偶数,最大值在n/2取到;如果n为奇数,在(n+1)/2o
∵an为等差数列a1,a3,a9成等比数列∴a1(a1+8d)=(a1+2d)^2a1^2+8d*a1=a1^2+4d*a1+4d^2d≠0∴d=a1a1+a3+a9/a2+a4+a10=(a1+a1
Sn=d/2n^2+(a1-d/2)n,(1).Sn+Sm=d/2(n^2+m^2)+(a1-d/2)(n+m)>=d/2(n^2+m^2+2nm)/2+(a1-d/2)(n+m)=d/22p^2+(
bn=sn-s(n-1)=1-1/3^n-(1-1/3^n-1)=-1/3^n+3/3^n=2/3^n
a1^2=a11^2,∴a1=-a11a1=-(a1+10d)2a1=-10da1=-5dan=a1+(n-1)d=-5d+(n-1)d=(n-6)d∵d0,a6=0,a7
a1,a3,a9成等比数列a3^2=a1*a9(a1+2d)^2=a1*(a1+8d)解得a1=d(a1+a3+a9)/(a2+a4+a10)=(3a1+10d)/(3a1+13d)=13d/16d=
a2+a4=2*a3=8a3=4,a4=3因此a1=6,d=-1通项为an=6-(n-1)=7-n
1.S5=5a1+10d=5(a1+2d)=70a1+2d=14a3=14a7^2=a2×a22(a3+4d)^2=(a3-d)(a3+19d)a3=14代入,整理,得d(d-4)=0d=0(已知d不
是等差数列设首相是a1那么an=a1+(n-1)dakn=a1+(kn-1)dak(n+1)=a1+(k(n+1)-1)d-(a1+(kn-1)d)=kd所以{akn}是等差数列2)已知等比数列{bn
因为a1+a5=a2+a4=4,所以:a2a4=3a2+a4=4解方程组:a2=1a4=3或者a2=3a4=1a4-a2=2d=2,或者a4-a2=-2d=1,或者d=-1
ak=48+2kbk=10+(k-1)dSk=(48+2k)[10+(k-1)d]令SK≤21即(48+2k)[10+(k-1)d]≤21求出k来.再问:最大圆面积为Sk
a1,a5,a17是等比数列(a1+4d)^2=a1*(a1+16d)a1^2+8a1d+16d^2=a1^2+16a1d8a1d=16d^2d不等于0a1=2dq=a5/a1=(a1+4d)/a1=
因为a(k1),a(k2),…,a(kn)恰为等比数列,又k1=1,k2=5,k3=17所以a5的平方=a1乘以a17又因为数列{an}为等差数列且公差d≠0所以a5=a1+4da17=a1+16d所
【解】(1)方程A(k)(X^2)+2A(k+1)X+A(k+2)=0,则其Δ=4[A(k+1)^2-A(k)*A(k+2)]=4[[A(k)+d]^2-A(k)*[A(k)+2d]]=4d^2>0;
因为{An}是等差数列,所以A2+A8=A4+A6=10,A4*A6=24,所以可将A4、A6看作方程x^2-24x+10=0的两个根,因为d
由题可得A1*A9等于A3方把分子分母都写为A3和公差d的表达式有上式可得A3和d的关系带入就可的到比值
a2,a5,a14是等比数列所以(a5)^2=a2*a14即(a+4d)^2=(a+d)*(a+13d)化简得d=2a所以公比q=a5/a2=(a+4*2a)/(a+2a)=3(2)a122=a+12
5或6是对的,a6=0,S5=S6,a1^2=a11^2a11^2-a1^2=0(a11+a1)(a11-a1)=0(2a1+10d)*10d=0d
再问:太给力了,你的回答完美解决了我的问题!
先求An的通项就行了A1+A4=14A2A3=45d