已知等差数列an是递增数列 且方程x的平方减14x加45
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:36:47
数列an是等差数列,设公差为da4=-27a1+3d=-271+3d=-27d=-28/3an=a1+(n-1)d=1+(n-1)(-28/3)=(31-28n)/3
a2005*a20060,a20050,则a2007+a2006>0因为a2005+a2006=a1+a40100所以使前n项之和sn
an=3n,bn=2^(n-1)分式上下同时乘以2,把2bn化成b(n+1),另s=b(n+1),则cn=s/[(s+1)(s+2)]=s/(s+1)-s/(s+2),另dn=bn/(bn+1),则c
a3+a6+a9=12=3a6a6=4a3+a9=8(1)a3×a6×a9=28a3×a9=7(2)由方程组得a3=1,a9=7,a6=4此时d=(a6-a3)/3=1a1=a3-2d=-1an=n-
a(n)=a(n+3).不可能递增.
A2+A5=A3+A4=24,A2*A5=108A2=6A5=18AN=4N-2再问:非常感谢,可以继续帮我答一下吗?再答:(2)TN+1/2BN=TN+1/2(TN-Tn-1)=3/2*Tn-1/2
(1)a3+a4=24等价于2a1+5d=24.a2*a5=108等价于a1^2+5a1d+4d^2=108.解出a1和d.楼主亲自算一下吧,培养计算能力.(2)Tn=1-(1/2)bn……[1]Tn
a1*p=a2a1*p^3=a4,a1*p-a1=a1*p^3-a1*Pp-1=p^(p^2-1);(p-1)(p*(p+1)-1)=0,p=1,或p^2+p-1=0,p=(-1+√5)/2,p=(-
a1,a2,a4成等差数列2a2=a1+a4即2a1*q=a1+a1q^3a1不为0所以:2q=1+q^3q^3-2q+1=0q^3-q^2+q^2-2q+1=0q^2*(q-1)+(q-1)^2=0
a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1
a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1
设数列的公比为q,首项为a1,则∵a52=a10,2(an+an+2)=5an+1,∴(a1q4)2=a1q9,2(1+q2)=5q,∵等比数列{an}为递增数列,∴q=2,a1=2∴an=2n故答案
a(n)=a*n^2-na(n+1)=a*(n+1)^2-n-101/(2n+1)a>1/(2+1)=1/3
设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.
其实也没什么技巧,主要是冷静思考,沉着应对:
如果本题有什么不明白可以追问,如果满意记得采纳再问:知:a4,a7是方程x²-8x+15=0的两根,且a4
设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列
∵数列{an}是等差数列,∴an-a(n-1)=d∵bn/b(n-1)=2^an/[2^a(n-1)]=2^[an-a(n-1)]=2^d∴{bn}是等比数列,公比为2^d
证::n=1,a1=s1=4n>1an=Sn-Sn-1Sn=n^2+3nSn-1=(n-1)^2+3(n-1)an=2n+2经验证n=1满足通项n>1an-an-1=2,由等差数列定义可知,数列{an
B(n+1)-Bn=A(n+1)+A(n+2)-An-A(n+1)=A(n+2)-An因为An是等差数列,所以A(n+2)-An=2d是一个与n无关的常数,所以Bn是等差数列