已知等差数列an是递增数列 且方程x的平方减14x加45

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:36:47
已知等差数列an是递增数列 且方程x的平方减14x加45
已知数列an是等差数列,且a1=1,a4=-27,求数列an的通项公式

数列an是等差数列,设公差为da4=-27a1+3d=-271+3d=-27d=-28/3an=a1+(n-1)d=1+(n-1)(-28/3)=(31-28n)/3

已知数列an是等差数列,首项a1

a2005*a20060,a20050,则a2007+a2006>0因为a2005+a2006=a1+a40100所以使前n项之和sn

已知{an}是单调递增的等差数列

an=3n,bn=2^(n-1)分式上下同时乘以2,把2bn化成b(n+1),另s=b(n+1),则cn=s/[(s+1)(s+2)]=s/(s+1)-s/(s+2),另dn=bn/(bn+1),则c

若等差数列{an}是单调递增数列,且a3+a6+a9=12,a3×a6×a9=28,求该数列的通项公式.)

a3+a6+a9=12=3a6a6=4a3+a9=8(1)a3×a6×a9=28a3×a9=7(2)由方程组得a3=1,a9=7,a6=4此时d=(a6-a3)/3=1a1=a3-2d=-1an=n-

已知数列{AN]是递增等差数列,A3+A4=24,A2*A5=108;数列{BN}的前N项呵是TN,且TN+1/2BN=

A2+A5=A3+A4=24,A2*A5=108A2=6A5=18AN=4N-2再问:非常感谢,可以继续帮我答一下吗?再答:(2)TN+1/2BN=TN+1/2(TN-Tn-1)=3/2*Tn-1/2

已知数列{AN]是递增等差数列,A3+A4=24,A2*A5=108;数列{BN}的前N项呵是TN,且TN+

(1)a3+a4=24等价于2a1+5d=24.a2*a5=108等价于a1^2+5a1d+4d^2=108.解出a1和d.楼主亲自算一下吧,培养计算能力.(2)Tn=1-(1/2)bn……[1]Tn

已知数列an是等比数列,且a1,a2,a4成等差数列,求数列an的公比

a1*p=a2a1*p^3=a4,a1*p-a1=a1*p^3-a1*Pp-1=p^(p^2-1);(p-1)(p*(p+1)-1)=0,p=1,或p^2+p-1=0,p=(-1+√5)/2,p=(-

已知数列{An}是等比数列,且a1,a2,a4,成等差数列,求数列{An}的公比

a1,a2,a4成等差数列2a2=a1+a4即2a1*q=a1+a1q^3a1不为0所以:2q=1+q^3q^3-2q+1=0q^3-q^2+q^2-2q+1=0q^2*(q-1)+(q-1)^2=0

已知数列{an}是等比数列 且a1,a2,a4成等差数列 求数列{an}的公比

a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1

已知An是等比数列,且a1,a2,a4成等差数列,求数列{an}公比

a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1

已知等比数列{an}为递增数列,且a

设数列的公比为q,首项为a1,则∵a52=a10,2(an+an+2)=5an+1,∴(a1q4)2=a1q9,2(1+q2)=5q,∵等比数列{an}为递增数列,∴q=2,a1=2∴an=2n故答案

已知数列{An}中,an=an^2-n,且{an}是递增数列,求实数a的取值范围

a(n)=a*n^2-na(n+1)=a*(n+1)^2-n-101/(2n+1)a>1/(2+1)=1/3

已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.

设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.

已知等差数列{an}是递增数列,且满足a4.a7=15,a3+a8=8

如果本题有什么不明白可以追问,如果满意记得采纳再问:知:a4,a7是方程x²-8x+15=0的两根,且a4

已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列

设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列

已知数列{an}是等差数列,且bn=2的an次方,求证数列{bn}是等比数列

∵数列{an}是等差数列,∴an-a(n-1)=d∵bn/b(n-1)=2^an/[2^a(n-1)]=2^[an-a(n-1)]=2^d∴{bn}是等比数列,公比为2^d

已知数列{an}的前n项和sn=n方+3n,求证数列{an}是等差数列

证::n=1,a1=s1=4n>1an=Sn-Sn-1Sn=n^2+3nSn-1=(n-1)^2+3(n-1)an=2n+2经验证n=1满足通项n>1an-an-1=2,由等差数列定义可知,数列{an

已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列

B(n+1)-Bn=A(n+1)+A(n+2)-An-A(n+1)=A(n+2)-An因为An是等差数列,所以A(n+2)-An=2d是一个与n无关的常数,所以Bn是等差数列