已知直线y等于x 3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:03:33
根据题意得f′(x)=3x2,设切点(m,n)则曲线y=f(x)上点(m,n)处的切线的斜率k=3m2,∴3m2=1,m=±33,故切点的坐标有两解.由直线的方程可得中斜率等于1的直线有两条,故选C.
y=2x+3中,当x=0时,y=3所以A(0,3)y=-2x-1中,当x=0时,y=-1所以B(0,-1)交点坐标:联立得:y=2x+3y=-2x-1解得:x=-1,y=1C(-1,1)再问:求三角形
题目不清楚怎么写再问:已知抛物线Y^2=AX的焦点为F(1,0),A(x1,y1),B(1,y2),C(x3,y3),(0小于等于y1小于Y2小于Y3)为抛物线上的三个点,且AF的绝对值+CF的绝对值
∵x+y+z=0,∴z=(-x-y)x^3+y^3+z^3=x^3+y^3-(x+y)^3=x^3+y^3-x^3-y^3-3x^2y-3xy^2=-3xy(x+y)=3xyz
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
∵y′=3-3x2=0,则x=±1,∴y′<0,可得x<-1或x>1,y′>0,可得-1<x<1,∴函数在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增,∴x=1是极大值点,此时极大
答:(1).f(x)定义域为x∈R.f'(x)=3x²+2ax,f'(1)=3+2a=-3,所以a=-3f(1)=1-3+b=0,所以b=2所以a=-3,b=2.(2)f(x)=x³
已知直线ax-y=0与直线2x+3y+1=0平行,所以a=−23,故选B.
1.y=(kx+2k-4)/(k-1)得(k-1)y=kx+2k-4即:k(y-x-2)=y-4令y-x-2=y-4=0,即x=2,y=4则直线必过(2,4)点即无论k取不等于1的任何实数此直线都经过
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
(1)∵f(x)=13x3−bx,∴f'(x)=x2-b设切点为(x0,y0),依题意得13x30−bx0=y0y0=−2x0−23x20−b=−2解得:b=3(2)设h(x)=f(x)−x2−m=1
(Ⅰ)由题意得:f′(x)=3x2+2ax+b,∴f′(−1)=4f(−1)=1,即3−2a+b=4−1+a−b+2=1,解得:a=b=-1;(Ⅱ)由(Ⅰ)知:f(x)=x3-x2-x+2,∵f(x)
依题意:斜率K=tana=1,所以倾斜角a=45度
答:(-1,0)这点.理由:设y=kx+k,当y=0时,则0=k(x+1),所以x=-1.
把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故选A
把(1,3)代入直线y=kx+1中,得到k=2,求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=-1,把(1,3)及a=-1代入曲线方程得:1-1+b=3,则b的值为3.故答案为:-1
平行于直线y=15x+2则切线斜率是15导数就是切线斜率即求y'=3x^2+3=15x^2=4x=2,x=-2x=2,y=8+6=14x=-2,y=-8-6=-14所以切点是(2,14),(-2,-1
1.曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O、A联立方程组得y=x3y=-2x3+3x解得x=0,x=1则O、A坐标为(0,0)(1,1)直线x=t(0
求导得函数极大值为6-a极小值为-a-26所以a大于6时有一个交点a=6或-26时有两个交点a大于-26小于6时有三个交点a小于-26时有一个交点
1)f'(x)=3x^2+2ax=x(3x+2a)由题意,f'(1)=-3即3+2a=-3,得:a=-3f(1)=0,得:1+a+b=0,即b=-1-a=22)f(x)=x^3-3x^2+2f'(x)