已知直线x-2y=-k 6和x 3y=4k 1的焦点在第四象限内
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:47:45
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
(Ⅰ)∵f(x)=13x2−2x2+ax,∴f/(x)=x2-4x+a.(2分)∵在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,∴x2-4x+a=-1有且只有一个实数根.∴△=1
由题意令x+y−2=0y=x3解得交点坐标是(1,1)故由直线x+y-2=0,曲线y=x3以及x轴围成的图形的面积为∫01x3dx+∫12(2-x)dx=14x4|10+(2x−12x2)|21=14
对c求导,y`=3x^2-1,Q处的切线平行于y=11x-1,说明y`=3x^2-1=11,x=±2,Q为(2,8)或(-2,-4),切线方程分别为y=11x-14,y=11x+18
导数的应用.求一阶导3x^2+6ax+3b,x=1处的切线与直线6x+2y+5=0平行,说明斜率是-3.把x=1带入一阶导为-3.在x=2处有极值,说明把x=2带入一阶导为0.
∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x03-3x02+2x0,∴y0x0=x02-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率
有极值的意思,就是此处的导数值为0,切线平行于直线,也就是说其导数值等于直线的斜率.这就可以列两个方程:函数f的导数为3x^2+2ax+b,f'(2)=12+4a+b=0f'(1)=3+2a+b=-3
(1)∵函数y=x3+3ax2+3bx+c,∴y'=3x2+6ax+3b,∵函数y=x3+3ax2+3bx+c在x=2处有极值,∴当x=2时,y′=0,即12+12a+3b=0,①∵函数图象在x=1处
①首先f′(x)=3x2+6ax+3b,因为函数f(x)在x=2取得极值,所以f′(2)=3•22+6a•2+3b=0即4a+b+4=0…(i)其次,因为图象在x=1处的切线与直线6x+2y+5=0平
x3次方y-2x2y2+xy3=xy(x²-2xy+y²)=xy(x-y)²=3x3²=27如果本题有什么不明白可以追问,再问:=xy(x2-2xy+y2)=x
(1)当切点是(1,0),y'=2x^2-1,切线的斜率=2-1=1,切线方程为:y=x-1(2)当切点不是(1,0),设切点是(t,t^3-t)y'=2x^2-1切线的斜率=2t^2-1而切线的斜率
(Ⅰ)由题意得:f′(x)=3x2+2ax+b,∴f′(−1)=4f(−1)=1,即3−2a+b=4−1+a−b+2=1,解得:a=b=-1;(Ⅱ)由(Ⅰ)知:f(x)=x3-x2-x+2,∵f(x)
(2)将直线方程与抛物线方程联立,消去y:x²-4ax-4=0根据韦达定理:x1+x2=4a,x1x2=-4根据中点坐标公式P点坐标为((x1+x2)/2,(y1+y2)/2)y1+y2=a
平行于直线y=15x+2则切线斜率是15导数就是切线斜率即求y'=3x^2+3=15x^2=4x=2,x=-2x=2,y=8+6=14x=-2,y=-8-6=-14所以切点是(2,14),(-2,-1
1.曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O、A联立方程组得y=x3y=-2x3+3x解得x=0,x=1则O、A坐标为(0,0)(1,1)直线x=t(0
求导得函数极大值为6-a极小值为-a-26所以a大于6时有一个交点a=6或-26时有两个交点a大于-26小于6时有三个交点a小于-26时有一个交点
先把圆的方程化成标准形式:(x+1)²+(y-1)²=1从而圆心为(-1,1),半径为1.所以若直线y=x+b与圆相切,那么圆心到直线的距离应该等于1.把直线的方程化成x-y+b=
x轴y=0y=x+3=0x=-3y=-2x+4=0x=2则底边=|-3-2|=5y=x+3=-2x+4x=1/3y=x+3=10/3则交点到x轴距离=10/3即高=10/3所以面积5×10/3÷2=2
在直线Y=2-X中,令Y=0,X=2,令Y=-1,X=3,∴直线与X轴交于A(2,0),与Y=-1交于D(3,-1),在直线Y=2X+5中,令Y=0,X=-2.5,令Y=-1,X=-3,∴直线与X轴交
x3+3xy-y3=(x-y)(x^2+y^2+xy)+3xy=-x^2-y^2+2xy=-(x-y)^2=-1