a b的n次方展开式系数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:48:31
前三项系数成等差数列,即2*n*(1/2)=n(n-1)/2*(1/2)^2+1得n=1(舍去),n=81.含x的5次方的项是T3=C(8,2)*x^6*1/(2√x)^2=7x^52.系数最大的项有
令x=1(x的平方+1/x)的n次方=2^n=32n=5二项展开式中x=(C³5)*x²的平方*(1/x)的立方二项展开式中x的系数10
[(√x+1/3根下x)ⁿ]²令x=1就可以得到展开式系数和为(1+1/3)^(2n)=(4/3)^(2n)
求项公式是这样的:Tr+1=C(n,r)a^(n-r)b^r上面的朋友有错误哦!所以正确答案是这样的:如果(a+根号a)^n的展开式中奇数项系数之和等于512即:2^(n-1)=512n=10(a+√
(1+x)^2nn次方系数是(C上面n下面2n)x^n(1+x)^2n-1n次方系数是(C上面n下面2n-1)x^n(C上面n下面2n)=[(2n)*(2n-1)……(n+1)]/n阶乘=2n/n*[
(1+2x)^n展开式中x^3的方面Cn(n-3)*1^(n-3)^3*(2x)^3=Cn(3)*8x^3=n(n-1)(n-2)*8/3*2*x^3=4n(n-1)(n-2)/3*x^3x^2的方面
对于二项式展开式的二项式系数的方法:一般先写出它的第r+1项T(r+1)的表达式,再利用通项求出它r,则它的二项式系数就是C(n,r)例如:(x-1/x)^5的展开式中第r+1项T(r+1)=C(5,
/>只有第六项的二项式系数最大,所以n为偶数n/2+1=6,解得n=10T(r+1)=C(10,r)*(√x)^(10-r)*2^r*(1/x²)^r=C(10,r)*2^r*x^(5-5r
(2^2n)-2^n=56,解得:2^n=8,n=3(1):C(3,2)X.(1/X)^2=3/X(2):C(6,3)Y^3(根号Y)^3=20Y^(9/2)
因为(a-2b)^n的展开式第四项最大,意知n=6,所以展开式(a-2b)^6的展开的习数和为(3^6+1)×2.
n=10.第四项的二次项系数是C3N,第八项是C7N,所以C3N=C7N,所以N=10.C3N=C7N=120
展开式中二项式系数和为512,即有2^n=512,得到n=9T(r+1)=C9(r)*[x^1/2]^(9-r)*(2/x)^r=C9(r)x^(9/2-r/2-r)*2^r令9/2-r/2-r=0,
展开式中第m+1项是T(m+1)=Cn取m*(2x)^m=2^m*Cn取m*x^m由已知得Cn取4最大,所以n=7所以展开式中系数=2^m*C7取m当m=5时,系数最大=672所以是672x^5,对应
杨辉三角:111121133114641…………其中第一行代表(a+b)的零次方展开式1每项的系数.第二行代表(a+b)的一次方展开式a+b每项的系数.第三行代表(a+b)的二次方展开式a^2+2ab
展开式中二次项系数和为2^N二次项系数和为64,所以2^N=64N=6常数项的求法你可以直接用通项公式,也可以这么想:要得到常数项,就要6个因式中,2个取x^2,4个取-2/x乘起来,所以常数项=C2
(a+b)^(2n)的展开式中第i项为:(2nCi)*a^i*b^(2n-i)由第5项的系数与第13项的系数相等=>(2nC5)=(2nC13)由于排列数的对称性:(nCk)=(nCn-k)所以:2n
前三项的系数分别为1,-n,n(n-1)/2则1-n+n(n-1)/2=28化简得n²-3n-54=(n-9)(n+6)=0由于n为正整数,则n=9.
本体中:系数=二项式系数.Cn(r-1)/Cnr=r/(n-r+1)=3/8,Cnr/Cn(r+1)=(r+1)/(n-r)=8/14解得,n=10,r=3.n=10,一共11项.系数最大项为中间项第
第五项本来应该为C(n,5)*x^5*(-3/2√x)^(n-5)其中x的指数应该为5-(n-5)/2=0所以n=15;所以所有项的系数和为取x=1的结果,所以有(-1/2)^15=-1/2^15
二项式系数的和是2的n次方=64,则:n=6得:[x²-(2/x)]的6次方的展开式中的常数项是:C(4,6)×[(x²)²]×[-(2/x)的4次方]=240再问:麻烦